
The 4-Color Theorem: History and Implications
Can Computers Prove Theorems?

K. Prahlad Narasimhan
January 12, 2021

National Institute of Science Education and Research, HBNI, Bhubaneswar

mailto: kprahlad.narasimhan@niser.ac.in


Outline

A History
Introduction
The Origin Story

Planar Graphs
Maps to Graphs
Properties

Key Ideas
Unavoidable Sets
Reducible Configurations

Four Colors Suffice
An End in Sight?
Aftermath

1/74



A History



Coloring Blobland

Goal: Color its states so that no two neighboring states get the
same color.
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Coloring Blobland

An obvious solution - color all the states with different colors.
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Coloring Blobland

Can we do better?

Yes!

4/74



Coloring Blobland

Can we do better? Yes!

4/74



Coloring Blobland

Can we do better? Yes!

5/74



Coloring Blobland

Can we do better?

Yes!

5/74



Coloring Blobland

Can we do better? Yes!

5/74



Coloring Blobland

Consider the state with the most number of neighbors.
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Coloring Blobland

Color all of its neighbors with unique colors.
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Coloring Blobland

Two of the five neighbors of the dark-blue state are uncolored.
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Coloring Blobland

Use two of the unused colors to color them!
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Coloring Blobland

The light-yellow state has one uncolored neighbor...
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Coloring Blobland

Use one of the unused colors to color it!
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Coloring A Map

• Let d(s) be the number of a neighbors a state s has.

• Let ∆(M) = maxs∈M d(s).

• Then, we can color the map with ∆(M) + 1-many colors.

• Can we do better?
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Once Upon a Time...

• In 1852 Francis Guthrie
postulated that four colors
are sufficient to color any
map.

• His brother, Frederick
Guthrie, posed this
question to Augustus De
Morgan in late 1852.

• De Morgan shared the
problem to William
Hamilton.
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The Search Continues...

The 4-Color Conjecture
Four colors sufficient to color any map.

• In 1878, Arthur Cayley revived the search for the proof of
this conjecture.

• His student Alfred Kempe published a proof of the
conjecture in Nature the following year.
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The Search Continues...

• In 1890 Percy Heawood proved that Kempe’s proof was
incorrect.

• He salvaged enough of it and proved that five colors are
sufficient to color any map.

• We will prove that six colors suffice for any map coloring
and sketch the proof of Heawood’s five-color theorem.
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Questions?

Questions?
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Planar Graphs



Maps to Graphs
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Maps to Graphs
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Maps to Graphs

Graphs which can be constructed from maps are called planar.
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Graphs which can be constructed from maps are called planar.
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Planar Graphs

Equivalently, graphs were the vertices are drawn on the plane
and the edges do not cross are planar.

∗

25/74



Planar Graphs

Equivalently, graphs were the vertices are drawn on the plane
and the edges do not cross are planar.∗

25/74



Planar Graphs

Equivalently, graphs were the vertices are drawn on the plane
and the edges do not cross are planar.

26/74



Planar Graphs

Equivalently, graphs were there is a drawing of the vertices and
the edges such that they do not cross are planar.
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Planar Graphs

Equivalently, graphs were there is a drawing of the vertices and
the edges such that they do not cross are planar.
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Planar Graphs

Not all graphs are planar!
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Planar Graphs

Planar graphs satisfy Euler’s Formula.
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Planar Graphs

A Useful Corrolary
Let G be a planar graph. Then, |E(G)| ≤ 3|V(G)| − 6.

|V(G1)| = 10 and |E(G1)| = 19; |V(G2)| = 4 and |E(G2)| = 6.
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Some Definitions

Let d(v) be the number of vertices adjacent to v ∈ V(G).

Here,
d(v) = 6.
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Some Definitions

Let ∆̄(G) =
∑

v∈V(G) d(v)
|V(G)| , the average degree of the graph.

Here,
∆̄(G1) =

2×19
10 and ∆̄(G2) =

2×6
4 .
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An Observation

Observation
Let G be a graph. Then, 2|E(G)| =

∑
v∈V(G) d(v). Therefore,

∆̄(G) = 2|E(G)|
|V(G)|

34/74



A Vertex of Small Degree

A Vertex of Small Degree
Let G be a planar graph. Then there exists v ∈ V(G) such that
d(v) ≤ 5.

Proof:

∆̄(G) = 2|E(G)|
|V(G)| ≤ 6|V(G)| − 12

|V(G)| < 6

Since the average degree is strictly less than 6, there exists a
vertex v with d(v) ≤ 5.
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Six Colors Suffice

Six Colors Suffice
Any map can be colored with at most six colors.

Proof:

Let G be the “corresponding” graph. We prove this by
induction on |V(G)|.

• Assume, for all G′ with |V(G′)| = k, our proposition is true.

• Consider a planar graph G with |V(G)| = k+ 1.

• Remove the vertex v with degree at most five and call the
resulting graph G′.

• G′ can be colored with six colors; hence, G with six colors.
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Questions?

Questions?
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Key Ideas



Back to Maps

A Vertex of Small Degree
Let G be a planar graph. Then there exists v ∈ V(G) such that
d(v) ≤ 5.

A State of Small Degree
Let M be a map. Then there exists a state s such that d(s) ≤ 5.
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Unavoidable Sets

A State of Small Degree
Let M be a map. Then there exists a state s such that d(s) ≤ 5.

• Thus, every map must contain at least one of a
“monogon”, “digon”, “triangle”, “square”, or “pentagon”.

• This set is called an unavoidable set.

• We care about them since we will encounter them in every
map!
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Kempe’s Unavoidable Set
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Paul Wernicke’s Unavoidable Set
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More Unavoidable Sets

• In 1920, Philip Franklin produced an unavoidable set with
nine configurations.

• In 1940, Henri Lebesgue constructed several interesting
unavoidable sets.

• By the 1960s, unavoidable sets with thousands of
configurations were produced.
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Minimal Criminals

• Assume that the four-color theorem is false.

• There exists a map which requires at least five colors to
color.

• Such a map with the least number of states (say k) is
called a minimal criminal of the problem.

• Every map with at most k− 1-many vertices is
four-colorable!
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Monogon?

Can a monogon appear in a minimal criminal?
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Digon?

Can a digon appear in a minimal criminal?
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Digon?

Can a digon appear in a minimal criminal? No!
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Triangle?

Can a triangle appear in a minimal criminal?
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Triangle?

Can a triangle appear in a minimal criminal? No!

49/74



Reducible Configurations

• Monogons, digons, and triangles cannot appear in a
minimal criminal.

• Kempe also proved that squares cannot appear in a
minimal criminal.

• Such a state (or arrangement of states) is called a
reducible configuration.

• Are there more reducible configurations?

Yes!
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Reducible Configurations

• In 1913, David Birkhoff developed a systematic method to
construct reducible configurations.

• In 1920, Philip Franklin used his ideas to prove that all
maps with at most 24 states is four-colorable.

• In 1938, he increased this to 35 states.
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Merging Concepts

Unavoidable Set
A set of configurations is unavoidable if every map contains
at least one configuration from this set.

Reducible Configuration
A configuration is called reducible if it cannot appear in a
minimal criminal.

• What if we can construct an unavoidable set of reducible
configurations?

• Then every map must contain a reducible configuration...
• Thus, the 4-Color Theorem will be proved!
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Questions?

Questions?
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Four Colors Suffice



The Search Begins

• A search for unavoidable set of reducible configurations
was advocated by Heinrich Heesch in the late 1940s.

• His hunch was that these configurations would be small
but the size of the set would be in the very large.

• Wolfgang Haken was an attendee of this lecture.

• Two decades and a wealth of experience later, he returned
to this problem.

• He reached out to Heesch and invited him to Illinois.
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The Computers Arrive

• Heesch had discovered thousands of reducible
configurations.

• With the help of Karl Dürre and a CDC 1604A, he started
checking large configurations for reducibility.

• Worked on a CDC 6600 with Yoshio Shimamoto the
following two years.

• In late 1971, Shimamoto proved that if a particular
configuration were reducible, then the four-color problem
was solved!
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The Computers Take Over

• Karl’s program showed that the configuration was not
reducible, halting progress again.

• Haken put the problem away for a few years since he was
not an expert on computers.

• Kenneth Appel, was an attendee in this lecture.

A Quote
I don’t know of anything involving computers that can’t be
done; some things just take longer than others. Why don’t we
take a shot at it?
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The Computers Take Over

• Appel and Haken were able to prove that there exists an
unavoidable set which uses only “good” configurations in
1974.

• To help with checking reducibility, they roped in John
Koch, a graduate student.

• By 1976, they had used 487 rules to construct the
unavoidable set.

• With the help of Haken’s daughter Dorothea, they checked,
by hand, the 2000 odd configurations for reducibility.

57/74



The Computers Take Over

• Appel and Haken were able to prove that there exists an
unavoidable set which uses only “good” configurations in
1974.

• To help with checking reducibility, they roped in John
Koch, a graduate student.

• By 1976, they had used 487 rules to construct the
unavoidable set.

• With the help of Haken’s daughter Dorothea, they checked,
by hand, the 2000 odd configurations for reducibility.

57/74



The Computers Take Over

• Appel and Haken were able to prove that there exists an
unavoidable set which uses only “good” configurations in
1974.

• To help with checking reducibility, they roped in John
Koch, a graduate student.

• By 1976, they had used 487 rules to construct the
unavoidable set.

• With the help of Haken’s daughter Dorothea, they checked,
by hand, the 2000 odd configurations for reducibility.

57/74



The Computers Take Over

• Appel and Haken were able to prove that there exists an
unavoidable set which uses only “good” configurations in
1974.

• To help with checking reducibility, they roped in John
Koch, a graduate student.

• By 1976, they had used 487 rules to construct the
unavoidable set.

• With the help of Haken’s daughter Dorothea, they checked,
by hand, the 2000 odd configurations for reducibility.

57/74



Success!

A Quote
Modulo careful checking, it appears that four colors suffice!
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Success!

• After a month rewriting the pre-print, they announced
their result on June 21, 1976.

• A long, arduous peer-review process later...

• The final version of the paper was published in December,
1977.
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Success!
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Is it a Proof?

• The response was, at best, muted.

• There were two groups: those who did not believe that the
thousands of cases solved by the computer was
error-free...

• And those who were unconvinced that the 700 pages of
hand calculations was error-free!
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What is a Proof Today?

A Quote
...it seems that the computer-assisted work of Appel, Haken
and Koch on the well-known Four-Color Problem may
represent a watershed in the history of mathematics. Their
work has been remarkably successful in forcing us to ask:
What is a Proof Today?
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Thomas Tymoczko’s Paper

What is a Proof?
A valid proof must be
convincing and surveyable.
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Concerns

• No qualms about the construction of the unavoidable set.

• Would mathematics become an empirical science?

• Can a proof be considered valid if it cannot be checked by
hand?
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Quotes

Ted Swart
For the most part I regard computer-assisted proof as just an
extension of pencil and paper. I don’t think there’s some
great divide which says that OK, you’re allowed to use pencil
and paper but you’re not allowed to use a computer because
that changes the character of the proof. I don’t see that
myself. I find such an argument strange.

Ted Swart
Human beings get tired, and their attention wanders, and
they are all too prone to slips of various kinds... Computers
do not get tired.
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Quotes

Ian Stewart
The answer appears as a kind of monstrous coincidence. Why
is there an unavoidable set of reducible configurations? The
best answer at the present time is: there just is. The proof:
here it is, see for yourself. The mathematician’s search for
hidden structure, his pattern-binding urge, is frustrated.

Daniel Cohen
... the real thrill of mathematics is to show that as a feat of
pure reasoning it can be understood why four colors suffice.
Admitting the computer shenanigans of Appel and Haken to
the ranks of mathematics would only leave us intellectually
unfulfilled.
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Quotes

Kenneth Appel
... there were people who said, “This is terrible mathematics,
because mathematics should be clean and elegant”, and I
would agree. It would be nicer to have clean and elegant
proofs.
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Improvements

• In 1989, Haken and Appel corrected all errors and
published their last word on the subject through a book.

• In 1994, Robertson et al. published a proof of the theorem
using a smaller unavoidable set using a a tenth of the
rules. Their algorithm also ran much quicker.

• In 2004, Georges Gonthier used a “proof checker” to verify
that the proof of the four-color theorem was valid!

68/74



Improvements

• In 1989, Haken and Appel corrected all errors and
published their last word on the subject through a book.

• In 1994, Robertson et al. published a proof of the theorem
using a smaller unavoidable set using a a tenth of the
rules. Their algorithm also ran much quicker.

• In 2004, Georges Gonthier used a “proof checker” to verify
that the proof of the four-color theorem was valid!

68/74



Improvements

• In 1989, Haken and Appel corrected all errors and
published their last word on the subject through a book.

• In 1994, Robertson et al. published a proof of the theorem
using a smaller unavoidable set using a a tenth of the
rules. Their algorithm also ran much quicker.

• In 2004, Georges Gonthier used a “proof checker” to verify
that the proof of the four-color theorem was valid!

68/74



Food For Thought

• Why should proofs be elegant?

• What differentiates arduous hand-written proofs and
computer-aided proofs?

• Assume that “maps” are now three-dimensional. Can all
such maps be colored using 4-colors?

• What if maps are embedded in different spaces? A torus?
Other surfaces with higher genus?
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Questions?

Please feel free to send me a mail1 if you have any questions
regarding this talk or just want to discuss the topic!

Thank you for your time!

Thanks to Chi-Ning for the opportunity!

1The ID is kprahlad.narasimhan@niser.ac.in just in case the link is broken.
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