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In this report, we start by familiarising ourselves with a few definitions related to terrain guarding. We will

then move onto proving some basic lemmas in this field. We will conclude the report by describing an expo-

nential FPT algorithm to solve the Discrete Terrain Guarding problem for orthogonal terrains.

1 Introduction

Definition. Let V = {v1, . . . , vn} be a finite sequence of points in R2. The curve specified by the line

segments connecting vi and vi+1 for all 1 ≤ i < n is called a polygonal chain. This polygonal chain is said to

be defined by V .

We define x(p) and y(p) to be the x and y coordinates of a point p in R2.

Definition. A 1.5D terrain T is a polygonal chain defined by V = {v1, . . . , vn}, a finite sequence of three or

more points in R2 which have the following two properties: x(vi) ≤ x(vj) for all 1 ≤ i < j ≤ n and x(vi−1) =

x(vi) = x(vi+1) for some 1 < i < n implies that y(vi−1) < y(vi) < y(vi+1) or y(vi−1) > y(vi) > y(vi+1).

Throughout the report, a terrain will refer to a 1.5D terrain. We use ImT to denote the image of T . It is

useful to think of T as a graph with vertices V and edges E = {(vi, vi+1) | 1 ≤ i < n}. For a, b ∈ ImT , we

say a precedes b, denoted by a ≺ b, if a appears on the terrain before b does (the terrain is scanned from

left to right). Two points on the terrain see each other if the line segment joining these points lies above the

terrain. This is defined formally below.

Definition. Let a, b ∈ ImT where a ≺ b. a sees b if ab(x(t)) ≥ y(t) for all t such that a ≺ t ≺ b. ab denotes

the line joining a and b.

Clearly, the relation“seeing” is reflexive and symmetric. It is, unfortunately, not transitive as illustrated by

Figure 1.
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Figure 1: v2 sees v4 and v4 sees v6 but v2 does not see v6.

Definition. Let U ⊆ ImT . Then the visibility region of U , visU = {v ∈ ImT | there exists u ∈ U seeing v}.

If U = {u}, we abuse the notation and use visu instead of visU .

Definition. A terrain T (V,E) is defined to be orthogonal or rectilinear if for all 1 < i < n, x(vi−1) = x(vi)

and y(vi) = y(vi+1) or x(vi) = x(vi+1) and y(vi−1) = y(vi).

Equivalently, orthogonal terrains are those whose edges are either parallel to the x or y axis and an edge

parallel to the x axis is followed by one parallel to the y axis and vice versa.

Definition. In an orthogonal terrain T (V,E), a vertex vi (1 < i < n) is:

(i) Convex if the angle formed by vi−1, vi and vi+1 above the terrain is convex.

(ii) Reflex if the angle formed by vi−1, vi and vi+1 above the terrain is reflex.

(iii) Left if x(vi−1) = x(vi).

(iv) Right if x(vi) = x(vi+1).

The set of reflex vertices is denoted by R and the set of convex vertices is denoted by C . The set of vertices

which are both reflex and left are called left reflex vertices and are denoted by Rl. Right reflex vertices are

symmetrically defined and are denoted by Rr. The set of left convex and right convex vertices are similarly

defined and are denoted by Cl and Cr respectively. This is illustrated in Figure 2. A left convex vertex is

defined to be of the opposite type as a right reflex vertex while a right convex vertex is the opposite type as

a left reflex vertex. v1 and vn are defined to be the opposite type as v2 and vn−1 respectively (in Figure 2,

v1 ∈ Cl and v8 ∈ Cr). We now define a couple of different versions of the terrain guarding problem. These

are referenced from [1].

Problem. Continuous Terrain Guarding: Given a terrain T (V,E) with |V | = n and k ∈ N, decide if

there exists a subset S ⊆ ImT with |S| ≤ k such that visS ⊇ V .

Problem. Discrete Terrain Guarding: Given a terrain T (V,E) with |V | = n and k ∈ N, decide if

there exists a subset S ⊆ V with |S| ≤ k such that visS ⊇ V .
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Figure 2: Here, v7 ∈ Rl; v2, v4 ∈ Rr; v1, v3, v5 ∈ Cl; v6, v8 ∈ Cr.

Here, it is important to note the difference between the two versions of the problem: in Continuous

Terrain Guarding, we can place guards (that is, choose S from) anywhere on the terrain to guard V

while in Discrete Terrain Guarding, we are allowed to place guards only on the vertices of the terrain

and are required to guard V . Clearly, the continuous version of the problem is more general than the latter.

A Continuous Terrain Guarding instance is denoted by (T (V,E), n, k) while a Discrete Terrain

Guarding instance is denoted by (T (V,E), n, k).

Problem. Annotated Terrain Guarding: Given a terrain T (V,E) with |V | = n and k ∈ N, G, C ⊆ V

decide if there exists a S ⊆ G with |S| ≤ k such that visS ⊇ C.

In Annotated Terrain Guarding, we are further restricting the placements of the guards to G, a subset of

V , and require it to guard only C instead of the whole set V . An Annotated Terrain Guarding instance

is denoted by (T (V,E), n, k,G, C). The Annotated Terrain Guarding instance where G = C = V is

equivalent to the Discrete Terrain Guarding instance (T (V,E), n, k). We will now define a useful graph

corresponding to a terrain with respect to the Annotated Terrain Guarding problem.

Definition. Let (T (V,E), n, k,G, C) be an Annotated Terrain Guarding instance. The visibility graph

of the instance, GT , is defined as follows: GT = (C, E′) where E′ = {(u, v) ∈ C2 | there is a g ∈
G seeing u and v}.

The visibility graphs of the terrains in Figures 1 and 2 are illustrated in Figure 3.

Algorithm 1: Visibility Graph of a Terrain

Input : An Annotated Terrain Guarding instance (T (V,E), n, k,G, C)
Output: Visibility graph of this instance.
E′[ ]
for each distinct pair of vertices (vi, vj) ∈ C2, i < j do

if there is a g ∈ G seeing vi and vj then
Add (vi, vj) to E′[ ]

end if

end for
return GT (C, E′)
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Figure 3: GT for the terrains in Figures 1 and 2 where G = {v2, v3, v4, v5} and C = V .

Algorithm 1 computes the visibility graph of an Annotated Terrain Guarding instance. Since checking

whether two vertices in a terrain see each other takes O(|V |) time, the algorithm runs in O(|C|2|G||V |) time.

Since C and G are subsets of V , this runs in O(|V |4) time.

If G(V,E) is a graph and V ′ ⊆ V , we denote the graph induced by V ′ as G[V ′]. Finally, we describe the

clique cover problem and define chordal graphs.

Problem. Clique Cover: Given a graph G(V,E) with |V | = n and k ≤ n, k ∈ N, decide if there exists a

collection of cliques K = {K1,K2 . . .Kk} in G such that for any v ∈ V , v ∈ Ki for some Ki ∈ K.

A Clique Cover instance is denoted by (G(V,E), n, k). Since a graph G can be covered by k cliques if,

and only if, the complement of G is k−colourable, this problem is NP-Hard.

Definition. A graph G(V,E) is chordal if for all V ′ ⊆ V where |V ′| ≥ 4, G[V ′] is not a cycle.

Observation 1.1. Let G(V,E) be a chordal graph. For any V ′ ⊆ V , G[V ′] is chordal.

Note that, to check if a given graph G(V,E) is chordal, it is enough to check if for any cycle C ⊆ V where

|C| ≥ 4, G[C] is a not a cycle.

2 Terrains and Chordal Graphs

In this section, we look at a few properties of terrains and chordal graphs. We then establish a relationship

between these two concepts. We first state and prove the Order Claim, referenced from [5], which lays the

foundation for the theorems that follow.

Lemma 2.1 (Order Claim). Let T(V,E) be a terrain. Let a, b, c, d ∈ ImT where a ≺ b ≺ c ≺ d such that

a sees c and b sees d. Then, a sees d.

Proof. Since a sees c, ac(x(t)) ≥ y(t) for all a ≺ t ≺ c. In particular, ac(x(b)) ≥ y(b) = bd(x(b)). Thus,

we have ac(x(b)) ≥ bd(x(b)). Similarly, since b sees d, bd(x(c)) ≥ ac(x(c)). Thus, d lies above ac and a lies

above bd. This implies that ad lies above ac and bd. Since ac and bd lie above the terrain, ad lies above the

terrain proving that a sees d.
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Definition. A left guard is a guard who can only see to its left, i.e, a left guard g sees v ∈ ImT if x(v) ≤ x(g)

and vg(x(t)) ≥ y(t) for all v ≺ t ≺ g. A right guard is defined symmetrically.

Using the two theorems that follow, we will prove the equivalence between a restricted case of the Anno-

tated Terrain Guarding problem and the clique cover problem in chordal graphs. We will prove in

Observation 2.16 that we can solve a Clique Cover instance (G(V,E), n, k) in O(|V |2|E|) time if G is a

chordal graph.

Theorem 2.2. Let (T (V,E), n, k,G, C) be an Annotated Terrain Guarding instance where G is a set

of left or right guards. Then, GT is a chordal graph.

Proof. We assume that G is a set of left guards. The proof for the other case follows using a symmetric

argument. Let C ⊆ C where |C| = k ≥ 4 be a cycle in GT . We prove that GT [C] is not a cycle. Let

C = {c1, c2 . . . ck} be the order of the vertices as they appear on the cycle. Also, we assume, without loss

in generality, that ci � c1 for all ci ∈ C and that ck ≺ c2. By definition, there is a left guard g1,k which

sees both c1 and ck. Similarly, we have g1,2, a left guard, which sees both c1 and c2. Now, c1 � g1,k and

c1 � g1,2. If g1,2 = g1,k then we have an edge between c2 and ck in GT . Since |C| > 3, GT [C] is not a cycle.

We are now left with two cases:

Case 1. g1,k ≺ g1,2.

As illustrated in Figure 4 (the vertices marked in red are the ones that we apply Lemma 2.1 on), g1,2 sees

ck implying that there is an edge between c2 and ck in GT . Since k ≥ 4, GT [C] is not a cycle. Note that

g1,k could be c1.

Case 2. g1,2 ≺ g1,k.

In this case, we have two possibilities. The first one is that c1 ≺ g1,2 while the second one is that c1 = g1,2.

As shown in Figure 5a, if c1 ≺ g1,2, then, once again, there is an edge between c2 and ck in GT [C]. Now,

consider the situation illustrated in Figure 5b. Unfortunately, we cannot use Lemma 2.1 directly. Thus, we

look at c3, the other neighbour of c2. Note that c3 exists as |C| ≥ 4. Let g2,3 be a left guard seeing both c2

and c3. We will show that if c3 ≺ c2, then GT [C] is not a cycle. We will then use induction to show that for
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all ci, where 3 ≤ i ≤ k, the above claim, i.e, if ci ≺ c2, then GT [C] is not a cycle, holds. Since ck ≺ c2 by

construction, this will complete our proof. We have the following two cases depending on the position of c3:

Case 1. c3 ≺ ck.

We have two cases: g2,3 ≺ g1,k and g1,k ≺ g2,3. These are shown in Figures 6a and 6b and using the

Lemma 2.1, we get the existence of an edge between c1 and c3 in the former case and between c2 and ck in

the latter case. Again, note that in the first case, g2,3 could be c2.

Case 2. ck ≺ c3 ≺ c2.

We have three cases: g2,3 ≺ c1, c1 ≺ g2,3 ≺ g1,k, and g1,k ≺ g2,3. Note that the third case is equivalent to

the one in Figure 6b since the position of c3 was not used in the proof of the existence of the (c2, ck) edge.

The first two cases are shown in Figures 7a and 7b. Using Lemma 2.1, we get that there is an edge between

c1 and c3 in both these cases.

Thus, we have proven that if c3 ≺ c2, then GT [C] is not a cycle. We now prove this claim for an arbitrary

ci, where 3 ≤ i ≤ k by induction on i.

We have proven the base case. Assume that, for some 3 ≤ j ≤ k−1, our supposition is true. Thus, if cj ≺ c2
then GT [C] is not a cycle. Now, assume that c2 ≺ cj . Since we took c1 to be the rightmost element of the
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cycle on the terrain, we have that c2 ≺ cj ≺ c1. Assume that cj+1 ≺ c2. We have two cases as illustrated by

Figures 8a and 8b. These prove that c2 and cj+1 share an edge in GT [C]. Since cj+1 is neither c1 nor c3,

GT [C] is not a cycle. Note that gj,j+1 could be cj in Figure 8a. This proves our supposition.

Since ck ≺ c2, GT [C] is not a cycle when C is a cycle of length at least 4. Thus, GT is chordal.

Theorem 2.3. Let (T (V,E), n, k,G, C) be an Annotated Terrain Guarding instance where G is a set

of left or right guards and G ∩ C = ∅. Let K ⊆ C where |K| ≥ 2. GT [K] is a clique iff there is a g ∈ G such

that vis g ⊇ K.

Proof. Again, we prove this claim only for a set of left guards. The proof for the other case will follow

symmetrically. Let K be a set such that there is a g ∈ G such that vis g ⊇ K. Thus, for any pair of vertices

in K there is an edge between them in GT [K] since there is a guard seeing them both. Thus, GT [K] is a

clique.

Now, we prove the forward direction by induction on the number of vertices in K where GT [K] is a clique.

If |K| = 2, then our claim follows trivially. Assume that our supposition holds for all cliques of size at most i

where i ≥ 2, i ∈ N. Let K = {k1, k2, . . . ki, ki+1} where the vertices are ordered according to how they appear

on the terrain. By the induction hypothesis, there is a left guard g1 such that vis g1 ⊇ {k2, . . . ki, ki+1}.
Since there is a (k1, ki+1) edge in GT [K], there is a left guard, say g2, seeing both of them. If g1 = g2, then

we have vis g1 ⊇ K proving the supposition. We are now left with two cases:

Case 1. g1 ≺ g2.

As illustrated in Figure 9a, using Lemma 2.1, we get that for any 2 ≤ j ≤ i, g2 sees kj . Thus, vis g2 ⊇ K.

Note that we have used that g1 6= ki+1.

Case 2. g2 ≺ g1.

Using Lemma 2.1 on the situation as in Figure 9b, we observe that g1 sees k1 implying that vis g1 ⊇ K.

Note that we have used that g2 6= ki+1.

This proves our supposition and completes the proof by induction.

Theorems 2.2 and 2.3 are, to the best of my knowledge, an addition to existing literature. These two theorems

give us the following observation.

Observation 2.4. Let (T (V,E), n, k,G, C) be an Annotated Terrain Guarding instance where G is a

set of left or right guards and G ∩ C = ∅. Then, (T (V,E), n, k,G, C) ≡ (GT (C, E′), |C|, k) where GT is the

visibility graph of T .

We will now look at a few properties of orthogonal terrains. We first observe that a left convex vertex can

only see vertices to its right. Symmetrically, a right convex vertex can only see vertices to its left. Thus, to

guard the set of left convex vertices, it is sufficient to have the guards to be left guards while to guard the

set of right convex vertices, it is sufficient to have the guards to be right guards. Referring back to Figure 2

will make these observations straightforward.
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Observation 2.5. Let T (V,E) be an orthogonal terrain and v ∈ Cl. Then, for all w ∈ vis v, x(w) ≥ x(v)

and y(w) ≥ y(v). Symmetrically, if v′ ∈ Cr, for all w′ ∈ vis v′, x(w′) ≤ x(v′) and y(w′) ≥ y(v′).

Observation 2.6. Let T (V,E) be an orthogonal terrain and G be a set of guards such that visG ⊇ Cl.

Then, the set of left guards placed on G sees Cl. Symmetrically, if G′ is a set of guards such that visG′ ⊇ Cr,

the set of right guards placed on G′ sees Cr.

Let T (V,E) be an orthogonal terrain. We will now prove that the Annotated Terrain Guarding

instance (T (V,E), n, k,R,C ) is equivalent to both the Continuous Terrain Guarding and the Discrete

Terrain Guarding versions of the problem.

Lemma 2.7. Let T (V,E) be an orthogonal terrain and G ⊂ ImT be a finite set of guards visG ⊇ C . Then,

visG ⊇ V .

Proof. Let vi ∈ Rl where i 6= 1. Then, vi−1 is a right convex vertex. Symmetrically, if vi ∈ Rr where i 6= n,

vi+1 is a left convex vertex. Thus, apart from the two special cases, at least one of vi’s neighbours, say vj ,

is convex and x(vi) = x(vj) and y(vi) ≥ y(vj). Since visG ⊇ C , there is a g ∈ G which sees vj . Since vi

lies above gvj and has the same x-coordinate, g sees vi. Now, assume that v1 ∈ Rl. Then, by definition,

v2 ∈ Cr. Thus, vis v2 = {v1, v2, v3}. Since visG ⊇ C , G contains at least one of v1, v2 or v3. Since all of

these vertices see v1, v1 ∈ visG. Symmetrically, we can prove that G sees vn if vn ∈ Rr. Thus, if vi ∈ R,

vi ∈ visG. This implies that visG ⊇ R. Since V = C ∪R, visG ⊇ V .

Here, we have proved that if we ensure that the convex vertices of an orthogonal terrain are guarded then all

the vertices of that terrain are guarded. We strengthen this further by proving that the set of convex vertices

can be guarded by k guards placed anywhere on the terrain if, and only if, there exists a set of guards placed

on the reflex vertices of size at most k which sees all the convex vertices in the following lemma.

Lemma 2.8. Let T (V,E) be an orthogonal terrain and G ⊂ ImT be a finite set of guards such that visG ⊇ C .

Then, there exists a G′ ⊆ R with |G′| ≤ |G| such that visG′ ⊇ C .

Proof. We construct a set G′ ⊆ R of guards as follows. Consider g ∈ G. Assume g lies in the interior of a

horizontal edge (vi, vi+1). Then, for any w ∈ vis g ∩ C , y(w) = y(g). Thus, vi and vi+1 see w. If vi ∈ R,

place a guard g′ at vi. If vi ∈ C and i = 1, place a guard g′ at vi+1 (that is, at v2). If vi ∈ C and i 6= 1,

then vi−1 ∈ R. Also, vi−1 lies above viw and x(vi−1) = x(vi). Thus, w ∈ vis vi−1. Place a guard g′ at vi−1.

Add g′ to G′. By construction, |G′| ≤ G and visG′ ⊇ C .

Succinctly put, these two lemmas give us the following theorem.

Theorem 2.9. (T (V,E), n, k) ≡ (T (V,E), n, k) ≡ (T (V,E), n, k,R,C ) if T (V,E) is an orthogonal terrain.

We now establish the relationship between the terrain guarding problem in orthogonal terrains and the

minimum clique cover problem in chordal graphs. Consider a Discrete Terrain Guarding instance

(T (V,E), n, k) where T is an orthogonal terrain. By Theorem 2.9, V can be guarded by k guards if, and only

if, C can be guarded by G ⊆ R, where |G| ≤ k. Now, since C = Cl∪Cr, C can be guarded by at most k guards

if, and only if, Cl and Cr can be guarded by kl and kr guards, say Gl ⊆ R and Gr ⊆ R, where kl + kr = k.
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Observation 2.6 tells us that Gl can be considered to be a set of left guards and Gr can be considered to

be the of right guards. Consider the Annotated Terrain Guarding instance (T (V,E), n, kl,Gl,Cl). Let

GT (l) be the visibility graph of this instance. Since Gl ⊆ R and Cl ∩R = ∅ by definition, Gl ∩Cl = ∅. Thus,

by Observation 2.4, Gl can guard Cl if, and only if, GT (l) can be covered by at most kl cliques. Similarly,

Gr can guard Cr if, and only if, GT (r) can be covered by at most kr cliques where GT (r) is the visibility

graph of the instance (T (V,E), n, kr,Gr,Cr). By Theorem 2.2, GT (l) and GT (r) are chordal. This gives us

the following lemma.

Lemma 2.10. A Discrete Terrain Guarding instance (T (V,E), n, k) where T is an orthogonal terrain

is a Yes instance if, and only if, there exists kl, kr ∈ N, kl + kr = k such that both the Clique Cover

instances (GT (l), |Cl|, kl) and (GT (r), |Cr|, kr) are Yes instances. Furthermore, GT (l) and GT (r) are chordal

graphs.

The rest of the section will be used to develop and describe polynomial time algorithms to decide a Clique

Cover instance (G(V,E), n, k) and to solve the maximum sized independent set problem in chordal graphs.

The algorithms that follow are adaptations of those found in [6]. The variables used in the rest of the

section have no intrinsic relationship with those in the terrain guarding instances described so far. We

first define simplicial vertices and a perfect elimination order. We then prove that chordal graphs have

a perfect elimination order. Using this, we will describe a greedy algorithm to decide a Clique Cover

instance. We let NG(v), for any vertex v in a graph G, to denote the neighbourhood of v in G and NG[v] be

NG(v) ∪ {v}.

Definition. Let G(V,E) be a graph. A vertex v ∈ V is said to be simplicial if NG(v) is a clique.

Definition. Let G(V,E) be a graph and σ be a permutation of the set V . σ is a perfect elimination ordering

if the set Wi = {vj | vj ∈ NG(vi), j > i}† is a clique for all vi ∈ V .

A perfect elimination ordering is abbreviated as a PEO. For the definition and the observation that follows,

let G(V,E) be a graph which is not complete and a, b ∈ V be two non-adjacent vertices in G.

Definition. S ⊂ V is a (a, b)-separator if a and b are not connected in G[V \ S]. S is a minimal (a, b)-

separator if no proper subset of S has this property.

Observation 2.11. Consider s ∈ S where S is a minimal (a, b)-separator. Then, there exists sa ∈ Va,

sb ∈ Vb such that sa, sb ∈ NG(s) where Va and Vb denote the connected components containing a and b in

G[V \ S] respectively.

Since V \ {a, b} is an (a, b)-separator, a minimal (a, b)-separator always exists.

Theorem 2.12. Every chordal graph G(V,E) has a simplicial vertex. If G is not complete, then G has two

non-adjacent simplicial vertices.

Proof. Let G(V,E) be a chordal graph. If G is complete, any vertex v ∈ V is simplicial. Assume G is not

complete. We prove that G has two non-adjacent simplicial vertices by induction on |V |. The base case

†Some texts define Wi = {vj | vj ∈ NG(vi), j < i}.
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is the graph G(V,E) where V = {a, b} and E is empty. Clearly, a, b are simplicial. Now, assume that the

supposition is true for all graphs which are not complete whose vertex set has at most n elements. Consider

G(V,E) where |V | = n and a, b ∈ V are non-adjacent vertices. Let S be a minimal (a, b)-separator.

We first prove that S is a clique. Consider x, y ∈ S. By Observation 2.11, there exists a path between x

and y whose vertices are from Va except for the endpoints themselves. Let the smallest such path be pa.

Similarly, let the smallest path from x to y through Vb be pb. If either of pa or pb are {x, y}, then (x, y) ∈ E.

Assume otherwise. Then pa ∪ pb forms a cycle of length at least 4. Since G is chordal, by Observation 1.1,

G[Va ∪ S ∪ Vb] is chordal. Thus, there exists an edge between two vertices in pa ∪ pb, say (e, f), which is not

part of the edges describing the cycle. Since S is a separator, both e and f are in either pa or pb. Assume,

without loss in generality, that e, f ∈ pa and that e appears before f in its description. Then, the path

described as follows: from x to e as in pa, e to f through this edge and from f to y as in pa, is smaller than

pa. This is a contradiction to our assumption that pa is the smallest edge from x to y through Va. Thus, S

is a clique.

If G[Va ∪ S] is complete, then any vertex in Va is simplicial in G[Va ∪ S]. Now assume that G[Va ∪ S] is

not complete. Since b /∈ Va ∪ S, the cardinality of Va ∪ S is strictly less than n. By induction hypothesis,

there exists two non-adjacent simplicial vertices in G[Va ∪ S]. Since S is a clique, one of these vertices must

be in Va. Thus, in both cases, there exists a vertex, say sa ∈ Va which is simplicial in G[Va ∪ S]. Since

NG(sa) ⊆ Va ∪ S, sa is simplicial in G. Similarly, there exists sb ∈ Vb which is simplicial in G. Since S is

separator, sa and sb are non-adjacent. This completes the proof by induction.

Observation 2.13. Let G(V,E) be a graph and α(G) be the size of a maximum independent set in G and

χ(G) be the size of a minimum clique cover of G. Then, α(G) ≤ χ(G).

We now describe a few simple algorithms regarding chordal graphs.

Algorithm 2: Computing a PEO in Chordal Graphs

Input : A chordal graph G(V,E).
Output: Perfect elimination ordering of G.
n← |V |
G′(V ′, E′)← G(V,E)
σ[ ]
for i← 0 to n− 1 do

for v ∈ V ′ do
if v is simplicial then

σi ← v
G′(V ′, E′)← G′[V ′ \ {v}]
break for

end if

end for
i← i+ 1

end for
return σ

Lemma 2.14. Given a chordal graph G(V,E), Algorithm 2 runs in O(|V |2|E|) time to compute a PEO

of G.

11



Proof. By Observation 1.1, G′(V ′, E′) is chordal after each iteration of the loop. By Theorem 2.12, there

exists a simplicial vertex in G′. Thus, σ is a perfect elimination ordering by construction.

Algorithm 3: Clique Cover Problem in Graphs With a PEO

Input : A Clique Cover instance (G(V,E), n, k) and its PEO σ[ ].
Output: Yes if, and only if, G can be covered by k cliques.
G′(V ′, E′)← G(V,E)
σ′[ ]← σ[ ]
i← 0
y[ ]
K[ ]
while σ′[ ] is not empty do

yi ← σ′0
Ki ← NG′ [yi]
Delete Ki from σ′[ ]
G′(V ′, E′)← G′[V ′ \Ki]
i← i+ 1

end while
χ′ ← |K[ ]|
if χ′ ≤ k then

return Yes
end if
else

return No
end if

Lemma 2.15. Given a Clique Cover instance (G(V,E), n, k) and its PEO σ, Algorithm 3 runs in

O(|V |+ |E|) time and returns Yes if, and only if, the Clique Cover instance is a Yes instance.

Proof. The set {yi | 0 ≤ i < χ′} is an independent set by construction and has cardinality χ′. Thus,

α(G) ≥ χ′. We first prove that K is a clique cover of G. yi = vi∗ for some vi∗ ∈ σ. Since yi is taken to be

the first element of σ′, NG′(yi) = NG′(vi∗) ⊆Wi where Wi = {vj | vj ∈ NG(vi∗), j > i∗}. Since σ is a PEO,

Wi is a clique for each i. Thus, NG′(yi) is a clique. This implies that Ki = NG′ [yi] is a clique for each i.

Thus, by construction, K = {Ki | 0 ≤ i < χ′} is a clique cover of G.

To prove that K is the minimal clique cover of G we now prove that |K| = χ′ = χ(G). Since K is a

clique cover, χ′ ≥ χ(G). This implies that α(G) ≥ χ′(G) ≥ χ(G). By Observation 2.13, α(G) = χ′(G) =

χ(G). Thus, the minimum number of cliques required to cover G is χ′(G) and a Clique Cover instance

(G(V,E), n, k) is Yes if, and only if, χ′(G) ≤ k.

Observation 2.16. Given a chordal graph G(V,E), on applying Algorithm 2 followed by Algorithm 3,

we solve a Clique Cover instance (G(V,E), n, k) in O(|V |2|E|) time.

The proof of Lemma 2.15 gives us the following observation and an algorithm running in O(|V |2|E|) time

which returns the maximum independent set of a chordal graph given its PEO.

Observation 2.17. Let G(V,E) be a chordal graph. Then, α(G) = χ(G).
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Algorithm 4: Independent Set in Graphs With a PEO

Input : A chordal graph (G(V,E).
Output: A maximum independent set I of G.
G′(V ′, E′)← G(V,E)
σ′[ ]← Algorithm 2(G(V,E))
i← 0
y[ ]
while σ′[ ] is not empty do

yi ← σ′0
Delete NG′ [yi] from σ′[ ]
G′(V ′, E′)← G′[V ′ \NG′ [yi]]
i← i+ 1

end while
I[ ]← y[ ]
return I[ ]

3 Algorithms for Terrain Guarding

In this section, we will first describe an algorithm to guard a terrain using only left or right guards using

which we design a 2-approximation algorithm for orthogonal terrains. We will conclude the section by looking

at a FPT algorithm with parameter k to decide a Discrete Terrain Guarding instance (T (V,E), n, k)

where T is an orthogonal terrain.

Algorithm 5: Guarding a Terrain with Left or Right Guards

Input : An Annotated Terrain Guarding instance (T (V,E), n, k,G, C) where G is a set of left
or right guards and G ∩ C = ∅.

Output: Yes if, and only if, k guards can guard C.
p← |C|
GT (C, E′)← Algorithm 1 (T (V,E), n, k,G, C)
σ ← Algorithm 2 (GT (C, E′))
return Algorithm 3 ((GT (C, E′), p, k), σ)

Lemma 3.1. Algorithm 5, given an Annotated Terrain Guarding instance (T (V,E), n, k,G, C)
where G is a set of left or right guards and G ∩ C = ∅, runs in O(|V |4) time and returns a Yes instance if,

and only if, the Annotated Terrain Guarding is a Yes instance.

Proof. By Theorem 2.2, GT (C, E′) is chordal. Thus, by Observation 2.16, Algorithm 5 decides the Clique

Cover Instance (GT (C, E′), p, k). By Observation 2.4, (T (V,E), n, k,G, C) is a Yes instance if, and only

if, (GT (C, E′), p, k) is a Yes instance.

Lemma 3.2. Algorithm 6, given an Annotated Terrain Guarding instance (T (V,E), n, k,G, C)
where G is a set of left or right guards and G ∩ C = ∅, runs in O(|V |4) time and returns an optimal

guard set which guards C.

Proof. By Theorem 2.2, GT (C, E′) is chordal. Also, by the proof of correctness of Algorithm 3, K is an

optimal clique cover of GT . We will now prove that, for any Kj ∈ K, visG′j ⊇ Kj . Let |Kj | = m. We
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Algorithm 6: Set of Left or Right Guards to Guard a Terrain

Input : An Annotated Terrain Guarding instance (T (V,E), n, k,G, C) where G is a set of left
or right guards and G ∩ C = ∅.

Output: An optimal set of guards, G′ ⊆ G′, such visG′ ⊇ C.
E′[ ]
Guards[ ]
for each distinct pair of vertices (vi, vj) ∈ C2, i < j do

if there is a g ∈ G seeing vi and vj then
Add (vi, vj) to E′[ ]
Guards(i,j) ← g

end if

end for
y[ ]
K[ ]
σ[ ]← Algorithm 2 (GT (C, E′))
i← 0
while σ[ ] is not empty do

yi ← σ0
Ki ← NGT

[yi]
Delete Ki from σ′[ ]
GT (C, E′)← GT [C \Ki]
i← i+ 1

end while
G′[ ]
for Kj ∈ K[ ] do

m← |Kj |
Sort vertices of Kj according to their position on the terrain.
Assume {vk0

, vk1
. . . vkm−1

} is the sorted order of Kj .
G′j ← Guards(km−2,km−1)

l← m− 3
while l ≥ 0 do

if G′j ≺ Guards(kl,km−1) then
G′j ← Guards(kl,km−1)

end if
l← l − 1

end while

end for
return G′[ ]
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prove, by induction, that, after i iterations of the while loop, visG′j ⊇ {vkm−i−2 , vkm−i−1 . . . vkm−1}, where

0 ≤ i ≤ m − 2. Let li = m − i − 2 and Ki
j = {vkm−i−2 , vkm−i−1 . . . vkm−1}. Since G′j is initialized to be

the guard seeing both vkm−1 and vkm−2 , the base case is true. Now, assume that for all i < m0 where

m0 ∈ N and m0 ≤ m − 2, our supposition is true. Thus, visG′j ⊇ Km0−1
j . By the proof of Theorem 2.3,

Guards(klm0
,km−1) sees Km0

j if G′j ≺ Guards(kl,km−1) while G′j sees the set otherwise. Thus, by construction,

after m0 iterations, visG′j ⊇ Km0
j proving our supposition. Thus, after the completion of the while loop,

visG′j ⊇ Kj . Since K is an optimal clique cover, G′ is an optimal guard set which sees C.

Algorithm 7: 2-Approximation Algorithm to Guard an Orthogonal Terrain

Input : An orthogonal terrain T (V,E).
Output: A set of guards, G′ with visG′ ⊇ V and |G′| ≤ 2 · opt where opt is the minimum number

of guards required to guard the terrain.
n← |V |
Gl[ ]← Algorithm 6 (T (V,E), n, n,R,Cl)
Gr[ ]← Algorithm 6 (T (V,E), n, n,R,Cr)
G′[ ]← Gl ∪ Gr
return G′[ ]

Lemma 3.3. Given an orthogonal terrain T (V,E), Algorithm 7, running in O(|V |4) time, returns a set

of guards, G′ with visG′ ⊇ V and |G′| ≤ 2 · opt where opt is the minimum number of guards required to

guard the terrain.

Proof. By Observation 2.6, Cl can be guarded by left guards while Cr can be guarded by right guards.

Furthermore, by Theorem 2.9, these guards can be placed in the reflex vertices of the terrain. Thus, Gl and

Gr have at most opt guards each. Since G′ = Gl ∪ Gr, |G′| ≤ 2 · opt and visG′ ⊇ C . By Theorem 2.9,

visG′ ⊇ V . Also, since |C |, |R| ∈ O(|V |), the running time of this algorithm is O(|V |4).

We will now define a few terms and prove some lemmas that will help us design the final algorithm of this

report. The rest of this section is based on [1].

Definition. In parameterized complexity, for a problem P, an instance I is associated with a real number,

say k. k is called the parameter of P. P is said to be fixed parameter tractable (FPT), with respect to a

parameter, if any instance I can be solved in O(f(k) · |I|O(1)) time where f is some computable function

independent of |I|.

We will prove that a Discrete Terrain Guarding instance (T (V,E), n, k) where T is an orthogonal

terrain is FPT with respect to k by describing an algorithm that decides such an instance in kO(k) · nO(1)

time.

Lemma 3.4. Consider an orthogonal terrain T (V,E) . Let U ⊆ Cl and k′ ∈ N. Then, one can decide in

polynomial time if there exists a S ⊆ Rl of size at most k′ and visS ⊇ U . If such a set does not exist, then,

in polynomial time, one can find a U ′ ⊆ U whose size is k′+ 1 such that there does not exist any set S ⊆ Rl

of size k′ which sees all of U ′. A symmetric claim holds for a subset of Cr vertices.
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Proof. Given the instance (T (V,E), n, k′,R, U), Algorithm 5 decides, in polynomial time, if it is an Yes

instance. This proves the first part of the lemma. If the instance is No, then, by Observation 2.4, the size of

the minimum clique cover of GT (U,E′) is strictly greater than k′. By Observation 2.17, |I| > k′ where I is

the independent set returned by Algorithm 4 (GT (U,E′)). Consider U ′ ⊆ I where |U ′| = k′ + 1. If some

k′ guards see all of U ′, then one of these guards must see two vertices in U ′. This contradicts the assumption

that U ′ is an independent set. Since Algorithm 4 runs in polynomial time, U ′ can be found in polynomial

time. The proof follows symmetrically for a subset of Cr vertices.

Definition. Let (T (V,E), n, k) be a Discrete Terrain Guarding instance where T is an orthogonal

terrain. A vertex e ∈ C is defined to be exposed if it is seen by more than k+2 many vertices of the opposite

type.

In Figure 10, e is an exposed vertex when k = 2. Let E ⊆ C be the set of exposed vertices. We let El = E ∩Cl

and Er = E ∩ Cr. Let e ∈ El. If e 6= v1, we let ue1, ue2 . . . u
e
k+3 denote the k + 3 leftmost vertices in Rr which

see e sorted from left to right by the order in which they lie on the terrain. If e is v1 we let ue2, ue3 . . . u
e
k+3

denote the k + 2 leftmost vertices in Rr which see e which are sorted as before. Similarly, given e ∈ Er and

e 6= vn, we let ue1, ue2 . . . u
e
k+3 denote the k + 3 rightmost vertices in Rl which see e sorted from right to

left by the order in which they lie on T . If e = vn, we have ue2, ue3 . . . u
e
k+3 to denote the k + 2 rightmost

vertices that see e. They are sorted as before. We prove, using the following observations and lemmas, that

(T (V,E), n, k,R,C ) ≡ (T (V,E), n, k,R,C \ E) for orthogonal terrains.

Observation 3.5. Consider e ∈ El. Then,

(i) x(ue1) = x(e), y(ue1) > y(e) if ue1 is defined.

(ii) x(uei ) > x(e), y(uei ) = y(e) for all 2 ≤ i ≤ k + 3.

Similarly, if e ∈ Er. Then,

(i) x(ue1) = x(e), y(ue1) > y(e) if ue1 is defined.

(ii) x(uei ) < x(e), y(uei ) = y(e) for all 2 ≤ i ≤ k + 3.

Observation 3.6. Let e ∈ E . Then, for any vertex v ∈ C which lies between e and uek+3, y(v) < y(e).

Observation 3.7. Let e ∈ E . Consider indices i and j such that 2 ≤ i, j ≤ k+ 2 and i 6= j. Then, no vertex

between uei and uei+1 sees any vertex between uej and uej+1.

Lemma 3.8. Let (T (V,E), n, k) be a Discrete Terrain Guarding instance where T is an orthogonal

terrain. Consider an exposed vertex e ∈ El. Then, for any 2 ≤ i ≤ k + 2, there exists w ∈ Cl \ El such that

uei ≺ w ≺ uei+1. Symmetrically, for an exposed vertex e ∈ Er, for any 2 ≤ i ≤ k + 2, there exists w ∈ Cr \ Er
such that uei+1 ≺ w ≺ uei .

Proof. Consider an exposed vertex e ∈ El and 2 ≤ i ≤ k + 2. Since uei ∈ Rr, the vertex following it in the

terrain is a left convex vertex. Thus, there exists a vertex v ∈ Cl such that uei ≺ v ≺ uei+1. Let w ∈ Cl be the

vertex between uei and uei+1 with the least y-coordinate. If w ∈ El, then there exists right reflex vertices uw2

and uw3 which see w. By the same argument as above, there exists a vertex w′ ∈ Cl such that uw1 ≺ w′ ≺ uw2 .
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Figure 10: The vertex e is exposed when we take k = 2.

By Observation 3.6, w′y < wy. By Observation 3.7, uw2 and uw3 lie in between uei and uei+1. Thus, w′ is a

left convex vertex which lies between uei and uei+1 whose y-coordinate is strictly less than that of w. This is

a contradiction to the construction of w. This proves the first part of the lemma. The proof of the second

part of the lemma follows symmetrically.

Lemma 3.9. Let T (V,E) be an orthogonal terrain and (T (V,E), n, k,R,C \ E) be a Yes instance of the

Discrete Terrain Guarding problem. Let G′ ⊆ R be a set of guards such that visG′ ⊇ C \ E and

|G′| ≤ k. Consider a vertex e ∈ El. Then, there exists an index 2 ≤ i ≤ k + 2 such that a vertex between uei
and uei+1 is seen by a g ∈ G′ which lies to the right of uei+1. Symmetrically, for a vertex e ∈ Er, there exists

an index 2 ≤ i ≤ k + 2 such that a vertex between uei and uei+1 is seen by a g ∈ G′ which lies to the left of

uei+1.

Proof. Consider an exposed vertex e ∈ El. By Lemma 3.8, for all 2 ≤ i ≤ k + 2, there exists a wi ∈ Cl \ El.
Since |{wi | 2 ≤ i ≤ k + 2}| = k + 1 and |G′| ≤ k, by Observation 3.7, there exists an index j, 2 ≤ j ≤ k + 2

such that wj is seen by a guard g ∈ G′ which is not between uej and uej+1. By Observation 2.6, g lies

to the right of wj . Thus, g lies to the right of uej+1. The proof of the second part of the lemma follows

symmetrically.

Lemma 3.10. (T (V,E), n, k,R,C ) ≡ (T (V,E), n, k,R,C \ E) where T is an orthogonal terrain.

Proof. Assume that (T (V,E), n, k,R,C ) is a Yes instance. Since C \ E ⊆ C , (T (V,E), n, k,R,C \ E) is a

Yes instance. Now, assume that there exists G′ ⊆ R, a set of guards, such that visG′ ⊇ C \ E and |G′| ≤ k.

Consider an vertex e ∈ El. By Lemma 3.9, there exists an index j where 2 ≤ j ≤ k+ 2 such that wj ∈ Cl \ El
is seen by a guard g ∈ G′ which lies to the right of uej+1. This is illustrated in Figure 11. On applying

Lemma 2.1, we get that g sees e. Since e was arbitrary, visG′ ⊇ El. Symmetrically, visG′ ⊇ Er. Thus,

visG′ ⊇ C . This proves that (T (V,E), n, k,R,C ) is a Yes instance.

Finally, we will now give a linear bound on the number of non-exposed vertices which are seen by vertices

of the opposite type. Given an orthogonal terrain, let C ⊆ C \ E and |C| = m. Let v1, v2, . . . vm denote the

vertices in C such that vi ≺ vj for all 1 ≤ i < j ≤ m. Let G ⊆ R such that visG ⊇ C. Define b as the
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m-length bit vector (b1, b2, . . . bm), such that for any 1 ≤ i ≤ m, bi = 0 if vi ∈ Cl \ E and bi = 1 otherwise.

Also, define b̂ as the m-length bit vector (b′1, b
′
2, . . . b

′
m), such that for any 1 ≤ i ≤ m, b′i = 0 if vi is seen by

a left reflex vertex and b′i = 1 otherwise.

The hamming distance between two vectors v and w of the length n, denoted by H(v, w), is the number of

indices i where 1 ≤ i ≤ n such that vi 6= wi. H(b, b̂) is the number of left convex vertices that are only seen

by right reflex vertices plus the number of right convex vertices that are seen by a left reflex vertex.

Observation 3.11. Let v ∈ R. Then, v sees at most two vertices of the opposite type. One of these vertices

have the same x-coordinate as v while the other has the same y-coordinate as v.

Lemma 3.12. Let T (V,E) be an orthogonal terrain and (T (V,E), n, k,R, C) be a Yes instance of the Dis-

crete Terrain Guarding problem where C ⊆ C \ E. Let G′ ⊆ R be a set of guards such that visG′ ⊇ C
and |G′| ≤ k. Then, H(b, b̂) ≤ 2k.

Proof. Since |G′| ≤ k, by Observation 3.11, G′ sees at most 2k vertices of the opposite type. That is, the

number of left convex vertices that are seen by a right reflex vertices plus the number of right convex vertices

that are seen by a left reflex vertex is at most 2k. Thus, H(b, b̂) ≤ 2k.

Definition. ((T (V,E), n, k,R, C), δ, kl, kr) is called an identifiable instance if there exists G ⊆ R where

visG ⊇ C such that |G ∩Rl| ≤ kl, |G ∩Rr| ≤ kr, and H(b, b̂) ≤ δ.

Theorem 3.13. Let (T (V,E), n, k,R, C) be a Discrete Terrain Guarding instance where T is an or-

thogonal terrain and C ⊆ C \ E. Then, Algorithm 8 ((T (V,E), n, k,R, C), δ = 2k, kl, kr) returns Yes if,

and only if, there exists kl guards placed on the left reflex vertices and kr guards placed on the right reflex

vertices which can guard C . Furthermore, it runs in kO(k) · nO(1) time.

Proof. First, assume that there exists G ⊆ R where visG ⊇ C \ E such that |G ∩Rl| = kl and |G ∩Rr| = kr.

Since Cl ⊆ Cl, by Lemma 3.4, we can decide in polynomial time if there exists a set of guards of size at most

kl which guards Cl and if not, find Ul ⊆ Cl of size kl + 1 which cannot be guarded by kl guards. Assume

that Cl cannot be guarded by kl many guards. Then, there exists a vertex v ∈ Ul which is seen by a right

reflex vertex. The algorithm finds v by trying all possible vertices in Ul. Since Ul ⊆ C \ E , v is not exposed.
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Algorithm 8: A FPT Algorithm to Guard an Orthogonal Terrain

Input : An Annotated Terrain Guarding instance (T (V,E), n, k,R, C) where T is an
orthogonal terrain, δ, kl - the number of guards to be placed on the left reflex vertices and
kr - the number of guards to be placed on the right reflex vertices.

Output: Yes if, and only if, kl guards placed on the left reflex vertices and kr guards place on the
right reflex vertices can guard C.

Cl ← C ∩ Cl

Cr ← C ∩ Cr

if δ < 0 then
return No

end if
else if Algorithm 5 (T (V,E), n, kl,Rl, Cl) is No then

GT (Cl, E′)← Algorithm 1 (T (V,E), n, k,Rl, Cl)
Il ← Algorithm 4 (GT (Cl, E′))
Choose Ul ⊆ Il such that |Ul| = kl + 1
for v ∈ Ul do

for u ∈ vis v ∩Rr do
Algorithm 8 ((T (V,E), n, k,R, C \ visu), δ − 1, kl, kr − 1)

end for

end for

end if
else if Algorithm 5 (T (V,E), n, kr,Rr, Cr) is No then

GT (Cr, E′)← Algorithm 1 (T (V,E), n, k,Rr, Cr)
Ir ← Algorithm 4 (GT (Cr, E′))
Choose Ur ⊆ Ir such that |Ur| = kr + 1
for v ∈ Ur do

for u ∈ vis v ∩Rl do
Algorithm 8 ((T (V,E), n, k,R, C \ visu), δ − 1, kl − 1, kr)

end for

end for

end if
else

return Yes
end if

19



Thus, there are at most k + 2 many right reflex vertices that see v. For each such right reflex, say u, the

algorithm places a guard on u and reduces δ and kr by one while deleting visu from Cl. The algorithm

works symmetrically when Cr cannot be guarded by kr many guards. Since there exists at most 2k many

(v, u) pairs by Lemma 3.12, it tries every such pair and must have made the correct choice in at least one

of the paths of it’s decision tree. Thus, the algorithm detects that Cl and Cr can be guarded by kl and kr

many guards respectively and returns a Yes instance.

Now, assume that Algorithm 8 ((T (V,E), n, k,R,C \E), δ = 2k, kl, kr) returns a Yes. Then, we prove, by

induction on δ that C can be guarded by placing kl and kr many guards on the left and right reflex vertices

respectively. For the base case, assume that δ = 0. Then, both Algorithm 5 (T (V,E), n, kl,Rl, Cl) and

Algorithm 5 (T (V,E), n, kr,Rr, Cr) are Yes instances. This proves that our supposition is true. Now, as-

sume that for all δ < d, where 1 ≤ d ≤ 2k, d ∈ N, our supposition is true. Consider an input to the algorithm

that has δ = d. If both Algorithm 5 (T (V,E), n, kl,Rl, Cl) and Algorithm 5 (T (V,E), n, kr,Rr, Cr) are

Yes instances, then our supposition is true. If Cl cannot be guarded by kl many guards placed on left reflex

vertices, then, the algorithm computes Ul ⊆ Cl of size kl + 1 which cannot be guarded by kl vertices placed

on Rl. Then, since it returns Yes, there exists a v ∈ Ul and a u ∈ visu ∩ Rr such that Algorithm 8

((T (V,E), n, k,R, C \ visu), δ − 1, kl, kr − 1) is a Yes instance. By induction hypothesis, C \ visu can be

guarded by placing kl and kr − 1 many guards on the left and right reflex vertices respectively. Thus, C can

be guarded by placing kl and kr many guards on the left and right reflex vertices respectively by including

the right reflex vertex u in the guard set of C \ visu. The proof for the case where Cr cannot be guarded by

kr many guards placed on left reflex vertices is symmetric. This proves our supposition and completes the

proof by induction.

Finally, since Ul and Ur are of size O(k) and each vertex in Ul or Ur can be seen by O(k) many vertices of the

opposite type, there are kO(k) many recursive calls of the algorithm. Since Algorithm 5, Algorithm 1

and Algorithm 4 all run in polynomial time, for each recursive call, O(1) time is spent. Thus, the overall

runtime of the algorithm is kO(k) · nO(1).

Algorithm 9: A FPT Algorithm to Guard an Orthogonal Terrain

Input : A Discrete Terrain Guarding instance (T (V,E), n, k) where T is an orthogonal
terrain.

Output: Yes if, and only if, (T (V,E), n, k) is a Yes instance.
Guarded← 0
for kl ← 0 to k do

kr ← k − kl
if Algorithm 8 ((T (V,E), n, k,R,C ), 2k, kl, kr) is Yes then

Guarded← 1
end if

end for
if Guarded is 1 then

return Yes
end if
else

return No
end if
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Observation 3.14. Algorithm 9, given an Discrete Terrain Guarding instance (T (V,E), n, k), where

T is an orthogonal terrain, runs in kO(k) ·nO(1) time and returns a Yes if, and only if, the instance is a Yes

instance.

Observation 3.15. Both the Discrete Terrain Guarding and Continuous Terrain Guarding

problems are FPT with respect to the number of guards that are required to guard the terrain when T

is an orthogonal terrain.

This discussion leads us to the two major open problems in this topic.

• Does there exists a FPT algorithm whose parameter is the number of guards that are required to guard

the orthogonal terrain (say k), which is polynomial over k?

• Are the Discrete Terrain Guarding and Continuous Terrain Guarding problems FPT with

respect to the same parameter even when the terrain is not orthogonal?
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