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In this report, we will define an annihilator of a subspace of a Banach space and look at the properties

of annihilators of closed subspaces of a Banach space. Finally, we will look to characterize the conditions

required for the sum of two closed subspaces of a Banach space to be closed. Throughout this report, we let

B denote a Banach space over R or C. We let B∗ denote the dual of a the Banach space B. We also denote

the open and closed balls of radius r around a point v ∈ B by BBr (v) and BBr (v) respectively (the metric

defined on B is the one induced by the norm describing B).

Definition. Consider a subspace W of B. The annihilator of W , denoted by W⊥, is the set

W⊥ = {f ∈ B∗ | f(v) = 0 for all v ∈W}

Similarly, for a subspace Z of B∗,

Z⊥ = {v ∈ B | f(v) = 0 for all f ∈ Z}

Lemma 1. Let W be a subspace of B and f ∈ B∗. Then, d(f,W⊥) = supw∈W,||x||≤1 |f(w)|.

Proof. Let g ∈W⊥. Then,

||f − g|| = sup
||w||≤1

|f(w)− g(w)|

≥ sup
w∈W,||w||≤1

|f(w)− g(w)|

≥ sup
w∈W,||w||≤1

|f(w)| (g(w) = 0)

Thus, d(f,W⊥) ≥ supw∈W,||x||≤1 |f(w)|. We now prove that there exists a ψ ∈ W⊥ such that the equality

is attained. By the Hahn-Banach Theorem1, there exists a g ∈ B∗ such that ψ agrees with f in W and

||f |W ||W∗ = ||ψ||. Then, since f − ψ ∈W⊥,

d(f,W⊥) ≤ ||f − (f − ψ)|| = ||ψ|| = ||f |W ||W∗ = sup
w∈W,||w||≤1

|f(w)|

1Theorem 3.1.2 in “Functional Analysis” by S. Kesavan.

1

mailto: kprahlad.narasimhan@niser.ac.in


This completes the proof of the lemma.

Lemma 2. Let W be a subspace of B and Z be a subspace of B∗. Then, W⊥ and Z⊥ are closed subspaces

of B∗ and B respectively.

Proof. First, we prove that W⊥ is a closed subspace of B∗. Let f, g ∈W⊥ and α ∈ R. Clearly, for all v ∈W ,

(f + αg)(v) = f(v) + α · g(v) = 0

Thus, W⊥ is a subspace of B∗. Now, let {fn}n∈N ⊆ W⊥ such that fn → f for some f ∈ B∗. Then, since

fn(v) = 0 for all v ∈ W , f(v) = 0 for all such v. This implies that f ∈ W⊥ and hence proves that W⊥ is a

closed subspace of B∗.

Now, for u, v ∈ Z⊥, and α ∈ R, for all f ∈ Z,

f(u+ αv) = f(u) + α · f(v) = 0

Thus, Z⊥ is a subspace of B. For a sequence {vn} in Z⊥ converging to some v ∈ B, for all f ∈ Z, f(v) = 0

since each such f is continuous. Thus, v ∈ Z⊥. This implies that Z⊥ is closed.

Corollary 3. Let W be a subspace of B and Z be a subspace of B∗. Then, W ⊆ (W⊥)
⊥

and Z ⊆ (Z⊥)
⊥

.

Proof. Let v ∈ W . Then, for all f ∈ W⊥, f(v) = 0. Thus, W ⊆ (W⊥)
⊥

. Since (W⊥)
⊥

is closed by

Lemma 2, W ⊆ (W⊥)
⊥

. Similarly, for all f ∈ Z, f(v) = 0 for all v ∈ Z⊥. Thus, Z ⊆ (Z⊥)
⊥

implying that

Z ⊆ (Z⊥)
⊥

.

Corollary 4. Let W be a subspace of B. Then, W = (W⊥)
⊥

.

Proof. By Corollary 3, we know that W ⊆ (W⊥)
⊥

. We know, for v /∈ W , there exists a f ∈ B∗ such that

f(v) > 0 and f(w) = 0 for all w ∈ W 2. This proves that there exists a f ∈ W⊥ such that f(v) 6= 0. Thus,

v /∈ (W⊥)
⊥

. This proves that (W⊥)
⊥ ⊆W which completes the proof of our claim.

Observation 5. For subspaces W1, W2 of B such that W1 ⊆W2, W2
⊥ ⊆W1

⊥. Similarly, for subspaces Z1,

Z2 of B∗ such that Z1 ⊆ Z2, Z2
⊥ ⊆ Z1

⊥.

Lemma 6. Let W1 and W2 be subspaces of B. Then, W1 ∩W2 ⊆ (W1
⊥ +W2

⊥)
⊥

. Similarly, for subspaces

Z1 and Z2 of B∗, Z1 ∩ Z2 ⊆ (Z1
⊥ + Z2

⊥)
⊥

.

Proof. Let w ∈W1 ∩W2. Then, for all f1 + f2 ∈W1
⊥ +W2

⊥ where f1 ∈W1
⊥ and f2 ∈W2

⊥,

(f1 + f2)(w) = f1(v) + f2(w) = 0

Thus, W1 ∩W2 ⊆ (W1
⊥ +W2

⊥)
⊥

.

2Corollary 3.2.1 in “Functional Analysis” by S. Kesavan.
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Let v ∈ Z1
⊥ + Z2

⊥. Then, v ∈ Z1
⊥ and v ∈ Z2

⊥ since 0 belongs to the annihilator of any subspace of B∗.
Thus, for all f ∈ Z1 ∩ Z2, f(v) = 0. Hence, Z1 ∩ Z2 ⊆ (Z1

⊥ + Z2
⊥)
⊥

.

Corollary 7. Let W1 and W2 be closed subspaces of B. Then,

W1 ∩W2 = (W1
⊥ +W2

⊥)
⊥

and W1
⊥ ∩W2

⊥ = (W1 +W2)
⊥

Proof. By Lemma 6, W1 ∩W2 ⊆ (W1
⊥ +W2

⊥)
⊥

. Since 0 belongs to the annihilator of any subspace of B,

W1
⊥,W2

⊥ ⊆W1
⊥+W2

⊥. Thus, by Observation 5 and Corollary 4, (W1
⊥ +W2

⊥)
⊥ ⊆ (W1

⊥)
⊥

= W1 = W1.

Similarly, (W1
⊥ +W2

⊥)
⊥ ⊆ W2. This proves that (W1

⊥ +W2
⊥)
⊥ ⊆ W1 ∩W2 and hence proves the first

part of our claim.

By Lemma 6 and Corollary 4,

W1
⊥ ∩W2

⊥ ⊆ ((W1
⊥)
⊥

+ (W2
⊥)
⊥

)
⊥

= (W1 +W2)
⊥

= (W1 +W2)
⊥

Since W1 + W2 is a superset of W1 and W2, by Observation 5, we have that W1
⊥ ∩W2

⊥ ⊇ (W1 +W2)
⊥

.

This completes the proof of our claim.

Corollary 8. Let W1 and W2 be closed subspaces of B. Then,

(W1 ∩W2)
⊥ ⊇ (W1

⊥ +W2
⊥) and (W1

⊥ ∩W2
⊥)
⊥

= (W1 +W2)

Proof. The first part of the claim follows directly from Corollary 7 and Corollary 3 while the second part of

the claim follows from Corollary 7 and Corollary 4.

Observation 9. Let W1 and W2 be two closed subspaces of B. Then, W1 ×W2 with following norm is a

Banach space.

||(w1, w2)||W1×W2
= ||w1||+ ||w2||

Corollary 10. Let W1 and W2 be two closed subspaces of B. Let f : W1 × W2 7→ W1 + W2 such that

f(w1, w2) = w1 + w2 where W1 × W2 is endowed with the topology induced by the norm described in

Observation 9. Then, f is an open map.

Proof. Clearly,

||f(w1, w2)|| = ||w1 + w2|| ≤ ||w1||+ ||w2|| = ||(w1, w2)||W1×W2

Thus, f is a continuous linear transformation. Also, f is surjective. Thus, by the Open Mapping Theorem3,

f is open.

3Theorem 4.4.1 in “Functional Analysis” by S. Kesavan.
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Lemma 11. Let W1 and W2 be two closed subspaces of B such that W1 + W2 is also closed. Then, there

exists a α > 0 such that for all z = w1 + w2 ∈W1 +W2, where w1 ∈W1 and w2 ∈W2,

||w1|| ≤ α · ||z|| and ||w2|| ≤ α · ||z||

Proof. Let f : W1×W2 7→W1 +W2 such that f(w1, w2) = w1 +w2. Then, by Corollary 10, f is open. Then,

f(BW1×W2
1 (0)) is open in W1 + W2. Hence, there exists a c > 0 such that BW1+W2

c (0) ⊆ f(BW1×W2
1 (0)).

That is, there exists a c > 0 such that for all w ∈ W1 + W2 with ||w|| < c, w can be written as w1 + w2

for some w1 ∈ W1 and w2 ∈ W2, where ||(w1, w2)||W1×W2
= ||w1|| + ||w2|| < 1. Now, for any non-zero

w ∈ W1 + W2, consider the vector c
2||w||w. Then, c

2||w||w = w1 + w2 where w1 ∈ W1 and w2 ∈ W2 with

||w1|| < 1 and ||w2|| < 1. Thus, if α = 2
c and w′1 = αw1 ∈W1 while w′2 = αw2 ∈W2; then, w = w′1 +w′2 and

||w′1|| and ||w′2|| are bounded above by α · ||w||. This completes the proof of this lemma.

Theorem 12. Let W1 and W2 be two closed subspaces of B such that W1 +W2 is also closed. Then, there

exists a α > 0 such that d(v,W1 ∩W2) ≤ α · (d(v,W1) + d(v,W2)) for all v ∈ B.

Proof. Let v ∈ B and ε > 0. By definition, we have w1 ∈W1 and w2 ∈W2 such that

d(v, w1) ≤ d(v,W1) + ε and d(v, w2) ≤ d(v,W2) + ε (1)

Let z = w1 − w2 ∈W1 +W2. Then, by Lemma 11, there exists a c > 0, w′1 ∈W1, w′2 ∈W2 such that

w1 − w2 = w′1 + w′2 (2)

||w′1|| ≤ c · ||w1 − w2|| (3)

||w′2|| ≤ c · ||w1 − w2|| (4)

By Equation (2), w1 − w′1 = w2 − w′2. Hence, w1 − w′1 = w2 − w′2 ∈W1 ∩W2. Thus,

d(v,W1 ∩W2) ≤ d(v, w1 − w′1)

≤ ||v − w1 + w′1||

≤ ||v − w1||+ ||w′1||

≤ ||v − w1||+ c · ||w1 − w2|| (By Equation (3))

= ||v − w1||+ c · ||(w1 − v) + (v − w2)||

≤ (1 + c) · ||v − w1||+ c · ||(v − w2)|| (By Equation (4))

≤ (1 + c) · d(v, w1) + (1 + c) · d(v, w2)

≤ (1 + c) · (d(v,W1) + ·d(v,W2)) + 2(1 + c) · ε (By Equation (1))

Since ε can be arbitrarily small, letting α be 1 + c completes the proof.

Corollary 13. Let Z1 and Z2 be two closed subspaces of B∗ such that Z1 + Z2 is also closed. Then, there

exists a α > 0 such that d(f, Z1 ∩ Z2) ≤ α · (d(f, Z1) + d(f, Z2)) for all f ∈ B∗.
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Proof. Since Lemma 11 and Theorem 12 can be stated in terms of B∗, our claim follows.

Corollary 14. Let W1 and W2 be two closed subspaces of B such that W1
⊥ + W2

⊥ is closed. Then, there

exists a α > 0 such that for all f ∈ B∗,

sup
w∈W1+W2,||w||≤1

|f(w)| ≤ α · ( sup
w1∈W1,||w1||≤1

|f(w1)|+ sup
w2∈W2,||w2||≤1

|f(w2)|)

Proof. Since (W1 +W2)
⊥

= W1
⊥ ∩W2

⊥ by Corollary 7 and distance between a point and any set is the

same as the distance between that point and the set’s closure in any metric space, this claim follows directly

from Corollary 13 and Lemma 1.

Lemma 15. Let W1 and W2 be two closed subspaces of a real Banach space B such that W1
⊥ + W2

⊥ is

closed. Then, there exists a α > 0 such that

1

α
BW1+W2

1 (0) ⊆ BW1
1 (0) +BW2

1 (0)

Proof. Let α be a positive real such that for all f ∈ B∗,

sup
w∈W1+W2,||w||≤1

|f(w)| ≤ α · ( sup
w1∈W1,||w1||≤1

|f(w1)|+ sup
w2∈W2,||w2||≤1

|f(w2)|)

Such a α exists by Corollary 14. Assume that there is a w0 ∈ 1
αB

W1+W2
1 (0) which is not in BW1

1 (0) +BW2
1 (0).

Then, w0 ∈ W1 +W2 and ||w0|| < 1
α . Since sum of two convex sets is convex and a closure of a convex

set is convex4, BW1
1 (0) +BW2

1 (0) is a convex set. Thus, there exists a hyperplane that strictly separates

w0 and BW1
1 (0) + BW2

1 (0)5. That is, there exists a f ∈ B∗ and a ∈ R such that f(w1 + w2) < a < f(w0)

for all w1 ∈ BW1
1 (0) and w2 ∈ BW2

1 (0). Since 0 ∈ BW1
1 (0) + BW2

1 (0), 0 < a < f(w0). Since w1 ∈ BW1
1 (0)

and w2 ∈ BW2
1 (0) implies that the −w1 and −w2 belong to the respective balls, for all such w1 and w2,

|f(w1 + w2)| > a. Thus,

sup
w1+w2∈B

W1
1 (0)+B

W2
1 (0)

f(w1 + w2) = sup
w1∈B

W1
1 (0)

f(w1) + sup
w2∈B

W2
1 (0)

f(w2)

= sup
w1∈B

W1
1 (0)

|f(w1)|+ sup
w2∈B

W2
1 (0)

|f(w2)|

= sup
w1∈W1,||w1||≤1

|f(w1)|+ sup
w2∈W2,||w2||≤1

|f(w2)|

Since sup
w1+w2∈B

W1
1 (0)+B

W2
1 (0)

f(w1 + w2) ≤ a < f(w0), it follows that

sup
w1∈W1,||w1||≤1

|f(w1)|+ sup
w2∈W2,||w2||≤1

|f(w2)| < f(w0) = ||w0||f(
w0

||w0||
) <

1

α
· sup
w∈W1+W2,||w||≤1

f(w)

This contradicts our premise and thus completes the proof of this lemma.

4Proposition 1.1.1 in “Convex Optimization Theory” by Bertsekas D. P.
5Theorem 3.2.2 in “Functional Analysis” by S. Kesavan.
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Corollary 16. Let W1 and W2 be two closed subspaces of a complex Banach space B such that W1
⊥+W2

⊥

is closed. Then, there exists a α > 0 such that

1

α
BW1+W2

1 (0) ⊆ BW1
1 (0) +BW2

1 (0)

Proof. The proof of this result follows from using the proof of Lemma 15 on the real part of a complex

function f ∈ B∗ and noting that ||f || = ||Re(f)||6.

Observation 17. Let W1 and W2 be two closed subspaces of a Banach space B such that W1
⊥ + W2

⊥ is

closed. Then, there exists a α > 0 such that

1

α
BW1+W2

1 (0) ⊆ BW1
1 (0) +BW2

1 (0)

Theorem 18. Let W1 and W2 be two closed subspaces of B. Then, the following are equivalent:

(i) W1 +W2 is closed.

(ii) W1
⊥ +W2

⊥ is closed.

(iii) W1 +W2 = (W1
⊥ ∩W2

⊥)
⊥

.

(iv) W1
⊥ +W2

⊥ = (W1 ∩W2)
⊥

.

Proof. By Corollary 8, it is clear that (i) and (iii) are equivalent. Also, (iv) =⇒ (ii) follows directly from

Lemma 2. We complete the proof of our claim by showing that (i) =⇒ (iv) and (ii) =⇒ (i).

Claim 18.1. If W1 and W2 be two closed subspaces of B such W1 +W2 is closed, W1
⊥+W2

⊥ = (W1 ∩W2)
⊥

.

Proof of Claim. From Corollary 8, we know that

W1
⊥ +W2

⊥ ⊆ (W1
⊥ +W2

⊥) ⊆ (W1 ∩W2)
⊥

So, we are left to prove that (W1 ∩W2)
⊥ ⊆ W1

⊥ + W2
⊥. Let f ∈ (W1 ∩W2)

⊥
. Define ψ : W1 + W2 7→ K,

where K is the underlying field of B, by ψ(w1 + w2) = f(w1). First, we will prove that ψ is a well defined

map. Then, we show that ψ is a continuous linear functional on W1 +W2.

If w1 + w2 = w′1 + w′2 for some other w′1 ∈ W1 and w′2 ∈ W2, then, w′1 − w1 = w′2 − w2 ∈ W1 ∩W2. Thus,

f(w1 − w′1) = f(w1)− f(w′1) = 0. This implies that ψ is a well defined function. Clearly, ψ is linear. Since

W1 +W2 is closed, by Lemma 11, there is a α > 0 such that

||w1|| ≤ α · ||w1 + w2|| =⇒ ||f || · ||w1|| ≤ α · ||f || · ||w1 + w2||

=⇒ ||f(w1)|| ≤ α · ||f || · ||w1 + w2||

=⇒ ||ψ(w1 + w2)|| ≤ k · ||w1 + w2|| (Let k = α · ||f ||)

6Proposition 3.1.1 in “Functional Analysis” by S. Kesavan.
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This implies that ψ is continuous. Since 0 ∈ W2, ψ agrees with f in W1. Since 0 ∈ W1, ψ(w2) = 0 for all

w2 ∈ W2. By the Hahn-Banach Theorem7, there exists a continuous extension of ψ to B∗, say ψ0 ∈ B∗.
Since ψ0 agrees with ψ in W1, it agrees with f in W1. Thus, f − ψ0 ∈ W1

⊥. Since ψ0 agrees with ψ in

W2, it vanishes in W2. Hence, ψ0 ∈ W2
⊥. This implies that f = (f − ψ0) + ψ0 ∈ W1

⊥ +W2
⊥ proving that

(W1 ∩W2)
⊥ ⊆W1

⊥ +W2
⊥. ♦

This proves that (i) =⇒ (iv). We now prove that (ii) =⇒ (i).

Claim 18.2. If W1 and W2 be two closed subspaces of B such W1
⊥ +W2

⊥ is closed, W1 +W2 is closed.

Proof of Claim. Endow W1 ×W2 with the norm || · ||W1×W2
where ||(w1, w2)||W1×W2

= max{||w1||, ||w2||}.
Define f from W1×W2 to W1 +W2 by f(w1, w2) = w1+w2. Clearly, f is linear. For all (w1, w2) ∈W1×W2,

||w1 + w2|| ≤ ||w1||+ ||w2|| ≤ 2 ·max{||w1||, ||w2||}

Thus, f is continuous. Note that BW1×W2
1 (0) = {(w1, w2) | ||w1|| < 1, ||w2|| < 1}. Hence, we have,

f(BW1×W2
1 (0)) = {w1 + w2 | ||w1|| < 1, ||w2|| < 1} = BW1

1 (0) +BW2
1 (0)

By Observation 17, there exists a α > 0 such that

1

α
BW1+W2

1 (0) ⊆ f(BW1×W2
1 (0)) =⇒ 1

2α
BW1+W2

1 (0) ⊆ f(BW1×W2
1 (0))

=⇒ BW1+W2
1
2α

(0) ⊆ f(BW1×W2
1 (0))

=⇒ f is open.

Since f is an open linear map, it is surjective. This gives

W1 +W2 = f(W1 ×W2) ⊆W1 +W2 ⊆W1 +W2 =⇒ W1 +W2 = W1 +W2

Thus, W1 +W2 is closed. ♦

This completes the proof of this theorem.

7Theorem 3.1.2 in “Functional Analysis” by S. Kesavan
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