
Linear and Semidefinite Programming

K Prahlad Narasimhan∗

National Institute of Science Education

and Research, HBNI, Bhubaneswar, India

January 2021

In this report, we will discuss two linear optimiization constructs: linear pro-

gramming and semidefinite programming. The goal of these two constructs is

to optimize a linear function subject to several constraints. In linear program-

ming, we require the constraints to be linear while in semidefinite programming

we also impose that the variables describe a positive matrix. We will use linear

and semidefinite programming to design approximation algorithms for compu-

tationally hard problems.

In Section 1, we define a linear program and use it to design algorithms to solve

the Set Cover problem (in Subsection 1.1) and the Max-Flow problem (in

Subsection 1.2). We prove a fundamental result in linear programming: the

Strong Duality Theorem using Farkas’ Lemmas in Section 2. We will then move

onto characterizing positive matrices in Section 3 and and use that result in Sec-

tion 4 to define semidefinite programming. Finally, we will present an algorithm

using semidefinite programming to solve the Max-Cut problem.

1 Linear Programming

In linear programming, we are required to find a vector x (or report that no such

vector exists) that optimizes (maximizes or minimizes) a given linear objective

function defined on x subject to linear constraints (inequalities or equalities) on

x. Formally, if f : Rm 7→ R is the linear objective function and {gi}ni=1, where

∗Under the supervision of Dr. Sutanu Roy, School of Mathematical Sciences, NISER

1

mailto: kprahlad.narasimhan@niser.ac.in

gi : Rm 7→ R for all 1 ≤ i ≤ n, are the linear constraints which are constrained

by {bi}ni=1 ⊂ R, then we are required to find a x ∈ Rm (or prove that no such

vector exists) which

Maximizes (or minimizes) f(x) subject to (1.1)

g1(x) ≤ (or ≥ or =) b1

g2(x) ≤ (or ≥ or =) b2

...

gn(x) ≤ (or ≥ or =) bn

Such a system is called a linear program or its abbreviation - LP. Given System

1.1, we can find a b ∈ Rn, c ∈ Rm, and A ∈ M(n,m) such that the following

LP is equivalent to it.

Maximize (or minimize) 〈c, x〉 subject to (1.2)

(Ax)1 ≤ (or ≥ or =) b1

(Ax)2 ≤ (or ≥ or =) b2

...

(Ax)n ≤ (or ≥ or =) bn

In this report, we let Xj denote the set {x = (x1, x2 . . . xj) ∈ Rj | xi ≥
0 for all 1 ≤ i ≤ j} for a j ∈ N. For a vector v ∈ Rn, we let vi denote its

ith coordinate.

Definition (Canonical Linear Program). Given a b ∈ Rn, c ∈ Rm, and

A ∈ M(n,m), find a x ∈ Xm such that (Ax)i ≤ bi for all 1 ≤ i ≤ n which

maximizes 〈c, x〉. That is, we are required to:

Maximize 〈c, x〉 subject to (1.3)

(Ax)i ≤ bi for all 1 ≤ i ≤ n

x ∈ Xm

This system is called the canonical LP. In practice; b, c, and A are usually taken

over Q.

This LP is said to be in the canonical form since other linear programming

2

variations (a maximization problem, the variables taking values over all of Rm,

equalities in the constraints, and ≥ in the constraints) can be reduced to System

1.3 efficiently and quickly. A x ∈ Rm is called a feasible solution of System 1.3

if it satisfies all the constraints of that LP: that is, x ∈ Xm and (Ax)i ≤ bi for

all 1 ≤ i ≤ n. If the solution space of a system is empty, then the system is

called infeasible. We let opt denote the optimal value of the objective function

of a LP.

The first algorithm to solve the linear programming problem was given in 1947

by Dantzig and is called the Simplex Algorithm. Even though the algorithm

solves most LPs efficiently, it has poor worst-case runtime - for a few cases, the

algorithm runs in exponential time. It was only in 1979 that the linear pro-

gramming problem was proven to be polynomial time solvable when Khachiyan

introduced the Ellipsoid Method. There have been further improvements in run-

ning times of algorithms solving this problem. Currently, the best algorithms

have running times which are slightly worse than quadratic times. The author

refers the reader to [6] for detailed discussions of these algorithms.

We now shift our focus to the concept of duality of linear programs. Consider

the following LP:

Maximize 5x1 + 3x2 + 4x3 + x4 subject to

4x1 + x2 + 0x3 + x4 ≤ 6

2x1 + x2 + x3 + 0x4 ≤ 4

x1 + 0x2 + x3 + 0x4 ≤ 2

xj ≥ 0 for all 1 ≤ j ≤ 4

Since we need to maximize the objective function, we find upper bounds for opt

and minimize these bounds. Formally, we try to minimize y = (y1, y2, y3) ∈ R3

such that y1·(4x1+x2+0x3+x4)+y2·(2x1+x2+x3+0x4)+y3·(x1+0x2+x3+0x4)

is at least 5x1 + 3x2 + 4x3 + x4. That is, we need to

Minimize 6y1 + 4y2 + 2y3 subject to

4y1 + 2y2 + y3 ≥ 5

y1 + y2 + 0y3 ≥ 3

0y1 + y2 + y3 ≥ 4

3

y1 + 0y2 + 0y3 ≥ 1

yi ≥ 0 for all 1 ≤ i ≤ 3

This LP is called the dual of the original LP (which is sometimes referred to as

the primal LP). In general, given a canonical linear program as in System 1.3,

its dual LP would be: find a y ∈ Xn such that (AT y)j ≥ cj for all 1 ≤ j ≤ m

which minimizes 〈b, y〉. Equivalently, we are required to:

Minimize 〈b, y〉 subject to (1.4)

(AT y)j ≥ cj for all 1 ≤ j ≤ m

y ∈ Xn

System 1.4 can be rewritten as follows: given a b ∈ Rn, c ∈ Rm, and A ∈
M(n,m), find a y ∈ Xn such that (−AT y)j ≥ −cj for all 1 ≤ j ≤ m which

maximizes 〈−b, y〉. Taking a dual of this system gives us the primal LP. It is

natural to ask if the optimal values of the objective functions of the primal and

the dual LP are the same. This is, in fact, true and is proved in Section 2 as

the Strong Duality Theorem. The Weak Duality Theorem, stated and proved

below, asserts that the optimal value of the objective function of the dual is at

least that of the primal.

Theorem 1.1 (Weak Duality Theorem). Let x be a feasible solution of

System 1.3 and y be a feasible solution of its dual, System 1.4. Then, 〈b, y〉 ≥
〈c, x〉.

Proof. For any feasible solutions x and y of the primal and the dual respectively,

we have:

〈b, y〉 ≥ 〈Ax, y〉 ((Ax)i ≤ bi for all 1 ≤ i ≤ n)

= 〈x,AT y〉 (A is a real matrix)

≥ 〈x, c〉 ((AT y)j ≥ cj for all 1 ≤ j ≤ m)

= 〈c, x〉 (c, x are vectors in Rn)

This completes the proof of this theorem.

Note that, in particular, if x∗ is an optimal solution of System 1.3 and y∗ is

an optimal solution of its dual, System 1.4, then the Weak Duality Theorem

4

implies that 〈b, y∗〉 ≥ 〈c, x∗〉.

We will use the Strong Duality Theorem in the next subsection of the report.

The theorem is stated formally below and is proved as Theorem 2.7 in Sec-

tion 2.

Theorem 1.2 (Strong Duality Theorem). Let x∗ be an optimal solution

of System 1.3 and y∗ be an optimal solution of its dual, System 1.4. Then,

〈c, x∗〉 = 〈b, y∗〉.

We now state a useful corollary of the Strong Duality Theorem.

Definition. Let x be a feasible solution of System 1.3 and y be a feasible so-

lution of its dual, System 1.4. Then, x and y are said to obey complementary

slackness conditions if for all j, where 1 ≤ j ≤ m, such that xj > 0, (AT y)j = cj

and for all i, where 1 ≤ i ≤ n, such that yi > 0, (Ax)i = bi.

Lemma 1.3 (Complementary Slackness). Let x be a feasible solution of

System 1.3 and y be a feasible solution of its dual, System 1.4. Then, x and y

obey complementary slackness conditions if, and only if, x and y are optimal

solutions of their respective LPs.

Proof. Let I = {i | yi > 0, 1 ≤ i ≤ n} and J = {j | xj > 0, , 1 ≤ j ≤ m}.

Assume that x and y obey complementary slackness conditions. Then,

〈b, y〉 =

n∑
i=1

biyi =
∑
i∈I

biyi =
∑
i∈I

(Ax)iyi =

n∑
i=1

(Ax)iyi = 〈Ax, y〉

Similarly,

〈c, x〉 =

m∑
j=1

cjxj =
∑
j∈J

cjxj =
∑
j∈J

(AT y)jxj =

m∑
j=1

(AT y)jxj = 〈AT y, x〉

Since 〈Ax, y〉 = 〈AT y, x〉, 〈b, y〉 = 〈c, x〉. Let x′ and y′ be feasible solutions of

the primal and dual respectively. Then, by the Weak Duality Theorem,

〈c, x〉 = 〈b, y〉 ≥ 〈c, x′〉

Thus, x is an optimal solution of System 1.3. Similarly, we infer that y is an

optimal solution of System 1.4.

5

Now, assume that x and y are the optimal solutions of System 1.3 and System

1.4 respectively. Then, by the Strong Duality Theorem, 〈b, y〉 = 〈c, x〉. By

the proof of the Weak Duality Theorem, this implies that 〈b, y〉 = 〈Ax, y〉 and

〈x,AT y〉 = 〈x, c〉.

〈b, y〉 = 〈Ax, y〉 =⇒
n∑
i=1

biyi =

n∑
i=1

(Ax)iyi =⇒
∑
i∈I

(bi − (Ax)i)yi = 0

Since (Ax)i ≤ bi for all 1 ≤ i ≤ n, this implies that for all i ∈ I, bi = (Ax)i.

Similarly, we can prove that for all j ∈ J , cj = (AT y)j .

Definition. Let P1 be a linear program. A LP P2 is said to be a relaxation of P1

if both P1 and P2 have the same objective function and every feasible solution

of P1 is a feasible solution of P2. If P1 and P2 are maximization problems, then,

clearly, optP1
≤ optP2

. If they are minimization problems, optP1
≥ optP2

.

Definition. Let α be a real number. An α-approximation algorithm for an

optimization problem P is an algorithm which reports, for any instance I of P,

a value of at most α · opt, where opt is the value of the optimal solution of

that instance. If P is a maximization problem, then α ≤ 1. Otherwise, α ≥ 1.

In the rest of this section we will look at two problems which have LP formula-

tions - the Set Cover problem and the Max-Flow problem.

1.1 The Set Cover Problem

The goal of this subsection is to understand the Set Cover problem and how

linear programming can be used to design fast approximation algorithms for

computationally hard problems. We first define the Set Cover problem and

then present a LP relaxation of the problem. We will then use this LP to design

three rounding algorithms for Set Cover.

Problem (Set Cover). Let E = {e1, e2 . . . en} be a set of elements and S =

{S1, S2, . . . Sm} ⊆ P(E). Let w, called the weight function, be a map from S
to the set of positive reals. Define wj , for all 1 ≤ j ≤ m, as w(Sj). A set

I ⊆ {1, 2 . . .m} is called a set cover of E if ∪j∈ISj = E. Find a set cover I ′ of

E such that
∑
j∈I′ wj ≤

∑
j∈I wj for all set covers I of E.

If wj = 1 for all 1 ≤ j ≤ m, then this restricted version of the problem is

called Unweighted Set Cover. The Unweighted Set Cover problem

6

can be reduced from the following important graph problems whose given graph

instance is G(V ′, E′) where V ′ = {v1, v2 . . . vn}:

• Vertex Cover: Let Sj = {e ∈ E′ | e is incident on vj} and E be the set

of edges of G.

• Dominating Set: Let Sj = N [vj] (the closed neighbourhood of vj) and

E be the set of vertices.

• Clique Cover: Let S be the set of all cliques and E be the set of vertices.

The Set Cover problem can be modelled as follows: for each Sj ∈ S, we have

a corresponding “flag” variable which takes 1 if Sj is in the set cover and takes

zero otherwise. To ensure that an element ei of E is covered, we impose that at

least one of the variables corresponding to a set containing ei is 1. The objective

is to minimize the weights of the sets in the set cover. Formally,

Minimize

m∑
j=1

xjwj subject to (1.5)

xj ∈ {0, 1} for all 1 ≤ j ≤ m∑
j:ei∈Sj

xj ≥ 1 for all 1 ≤ i ≤ n

Note that the above system is not a linear program. The following is a relaxation

of the system defined previously:

Minimize

m∑
j=1

xjwj subject to (1.6)

x ∈ Xm∑
j:ei∈Sj

xj ≥ 1 for all 1 ≤ i ≤ n

For an optimal solution x∗ of System 1.6, x∗j ≤ 1 for all 1 ≤ j ≤ m. Otherwise,

if x∗j > 1 for some such j, then replacing x∗j by 1 in this solution is a feasible

solution of this system whose objective functional value is strictly less than that

of the original solution, a contradiction to our assumption of optimality. Thus,

an vector corresponding to an optimal solution lies in [0, 1]
m

.

Definition. The frequency of an instance of the Set Cover problem, denoted

by f , is the maximum number of times an element occurs in a set in S (for

7

example, in the Vertex Cover problem, f = 2 since each edge is incident on

exactly two vertices).

We now present three approximation algorithms to solve the Set Cover prob-

lem. The sketch of the algorithms are as follows: find an optimal solution of

System 1.6 in polynomial time and construct a solution for Set Cover by

carefully choosing a factor α ∈ [0, 1] and choosing only the sets corresponding

to variables whose values are at least α in the set cover. These type of algo-

rithms are called rounding algorithms. All the three algorithms presented have

an approximation factor of f .

Algorithm 1.4 (Primal f-approximation Algorithm). Compute an opti-

mal vector of System 1.6, say x∗. We construct a feasible solution of System

1.5 using the following procedure. Construct a vector x′ ∈ Rm as follows:

x′j =

1 if x∗j ≥ 1
f

0 if x∗j <
1
f

Report the collection of sets corresponding to the vector x′. 4

Theorem 1.5. Algorithm 1.4 is a f -approximation algorithm for Set Cover.

Proof. First, we prove that the vector reported by the algorithm is indeed a

feasible solution of System 1.5. For each ei ∈ E, there exists a Sj ∈ S whose

corresponding variable takes a value greater than or equal to 1
f . Otherwise, x∗

will fail to satisfy the constraint corresponding to ei in System 1.6, a contradic-

tion. This implies that x′ is a feasible solution of System 1.5.

Now, we prove that the procedure described above is a f -approximation algo-

rithm. Let j ∈ N such that 1 ≤ j ≤ m.

If x∗j <
1
f , x′j = 0. Thus, x′j ≤ f · x∗j . If 1

f ≤ x∗j , x
′
j = 1 ≤ f · x∗j . This implies

that x′j ≤ f · x∗j for all 1 ≤ j ≤ m.

Let opt be the optimal solution of System 1.5 and opt′ be the optimal solution

of System 1.5. Clearly, opt′ ≤ opt.

m∑
j=1

x′jwj ≤
m∑
j=1

f · x∗jwj (x′j ≤ f · x∗j for all 1 ≤ j ≤ m)

8

≤ f ·
m∑
j=1

x∗jwj

= f · opt′ (x∗ is an optimal solution)

≤ f · opt (opt′ ≤ opt)

Thus, Algorithm 1.4 is a f -approximation algorithm for the Set Cover prob-

lem.

We will now present two approximation algorithms that involve the dual of

the Set Cover problem. Each constraint of System 1.6 forces the sum of

the variables corresponding to the sets containing an element to be at least

1. Thus, each constraint in the dual will ensure that the sum of the variables

corresponding to the elements of a set does not exceed the weight of the set

itself. Formally, the dual of the Set Cover problem will be:

Maximize

n∑
i=1

yi subject to (1.7)

y ∈ Xn∑
i:ei∈Sj

yi ≤ wj for all 1 ≤ j ≤ m

By the Weak Duality Theorem,
∑m
j=1 xjwj ≥

∑n
i=1 yi for any feasible solutions

x and y of Systems 1.6 and 1.7 respectively. Thus, opt′ ≥
∑n
i=1 yi.

Algorithm 1.6 (Dual f-approximation Algorithm I). Compute an opti-

mal solution of System 1.7, say y∗. Let I ′ be the collection of sets whose weights

are equal to the sum of the values of the variables corresponding to the elements

in that set. That is, I ′ = {Sj |
∑
i:ei∈Sj

y∗i = wj}. Report I ′. 4

Theorem 1.7. Algorithm 1.6 is a f -approximation algorithm for Set Cover.

Proof. We prove that I ′ is a set cover of E. Consider an element ek ∈ E. Let

J = {j | ek ∈ Sj}. Define ε = minj∈J{wj−
∑
i:ei∈Sj

y∗i } where y∗ is the optimal

solution used in Algorithm 1.6 to produce I ′. As imposed by the constraints of

System 1.7, ε ≥ 0. Define a vector y′ ∈ Rn as follows: y′k = y∗k + ε and y′i = y∗i
for all i 6= k, 1 ≤ i ≤ n.

9

For any j /∈ J , ∑
i:ei∈Sj

y′i =
∑

i:ei∈Sj

y∗i ≤ wj

For any j ∈ J ,∑
i:ei∈Sj

y′i = ε+
∑

i:ei∈Sj

y∗i ≤ (wj −
∑

i:ei∈Sj

y∗i) +
∑

i:ei∈Sj

y∗i ≤ wj

Thus, for all 1 ≤ j ≤ m,
∑
i:ei∈Sj

yi ≤ wj . Clearly, y′ ∈ Xn. This implies that

y′ is a feasible solution of System 1.7 and
∑
j y
′
j =

∑
j y
∗
j + ε. Since y∗ was an

optimal solution of this system, ε = 0. This implies that there exists a set Sj

containing ek such that
∑
i:ei∈Sj

y∗i = wj . Thus, I ′ is a set cover of E.

Let opt be the optimal value of the Set Cover problem (System 1.5) and

opt′ be the optimal value of its linear programming relaxation (System 1.6). If

x∗ is an optimal solution of System 1.6, then, we have

f · opt ≥ f · opt′ (opt ≥ opt′)

= f ·
m∑
j=1

(x∗jwj)

≥ f ·
n∑
i=1

y∗i (Weak Duality Theorem)

≥
∑
Sj∈S

∑
i:ei∈Sj

y∗i (Definition of f)

≥
∑
Sj∈I′

∑
i:ei∈Sj

y∗i (I ′ ⊆ S)

=
∑

j:Sj∈I′
wj (Construction of I ′)

Thus, this algorithm returns a f -approximate solution as well.

Let I be the set cover returned by Algorithm 1.4. Then, by construction, for all

Sj ∈ I, x∗j ≥ 1
f > 0 (where x∗ is the optimal solution of System 1.6 considered

by the algorithm). By Lemma 1.3, for all such Sj ,
∑
i:ei∈Sj

y∗i = wj . Thus,

Sj ∈ I ′. This implies that I ⊆ I ′. That is, Algorithm 1.4 does at least as well

Algorithm 1.6 for any instance of the Set Cover problem.

Using the proof of Theorem 1.7, we can produce an algorithm for Set Cover

10

which does not include solving a LP.

Algorithm 1.8 (Dual f-approximation algorithm II). We report the set

cover as given by the following procedure.

• y ∈ Rn, y ← 0

• I ′ ← ∅

• while I ′ is not a set cover do

– Find el ∈ E which is not covered by I ′

– J ← {j | ek ∈ Sj}

– ε← minj∈J{wj −
∑
i:ei∈Sj

yi}

– yl ← yl + ε

– I ′ ← {Sj |
∑
i:ei∈Sj

yi = wj}

• Report I ′ 4

Lemma 1.9. Algorithm 1.8 is a f -approximation algorithm for Set Cover.

Proof. Let k ∈ N. Denote the set that is produced in the kth step of this

algorithm be I ′k and the dual vector be y(k). Then, by definition, I ′k = {Sj |∑
i:ei∈Sj

y
(k)
i = wj}. If I ′k is a set cover of E and report it if it is. If I ′k is not a

set cover, then, there exists an el ∈ E which is not covered by I ′k. Thus, over

all the Sj which contains el, ε = minj{wj −
∑
i:ei∈Sj

y
(k)
i } > 0 (by the proof of

correctness of Algorithm 1.6). y(k+1) is defined as follows: y
(k+1)
l = y

(k)
l + ε and

y
(k+1)
i = y

(k)
i for all i 6= l. Clearly, y(k+1) is still a feasible solution of System

1.7 and Ik+1 contains el.

This implies that we will need to run this algorithm for at most n many steps

since at each step we cover at least one new element. Assume that the algorithm

runs p times. Then, I ′p will be a f -approximate solution as we can apply the

same proof as used in the correctness of Algorithm 1.6 (replace y∗ by y(p) and

I ′ by I ′p in that proof).

1.2 The Maximum Flow Problem

In this subsection, we will study the Max-Flow and Min-Cut problems to

better understand the concept of duality. We will prove that the both of these

11

problems admit linear programming formulations and that they are the duals

of each other.

Let (G(V,E)) be a directed graph with two special vertices s (called the source)

and t (called the sink) whose indegree and outdegree respectively is 0. The

capacity, denoted by c, is a function from the set of arcs, E, of this graph to the

set of non-negative reals. The capacity of an edge e ∈ E is c(e). A network is a

tuple (G(V,E), c) where c is a capacity function of the directed graph G(V,E)

which has a source and a sink. A flow is a function f : E 7→ R+ which satisfies

the following constraints:

(i) f((u, v)) ≤ c((u, v)) for all (u, v) ∈ E.

(ii)
∑
v∈N(u) f((u, v)) =

∑
w:u∈N(w) f((w, u)) for all u ∈ V \ {s, t}.

For the sake of simplicity, we abuse notation to rewrite the second constraint

by summing over all v ∈ V instead of the neighbours of u. It is intrinsically

understood that the flow values of the other tuples are 0. Thus, we can rewrite

the constraints as follows:

(i) f((u, v)) ≤ c((u, v)) for all (u, v) ∈ E.

(ii)
∑
v∈V f((u, v)) =

∑
w∈V f((w, u)) for all u ∈ V \ {s, t}.

The cost of the flow f is defined to be the
∑
v∈V f((s, v)).

Problem (Maximum Flow). Given a network (G(V,E), c), find a flow f ′ of

this network which has the maximum cost.

We prove that the optimal flow always exists.

Lemma 1.10. Given a network (G(V,E), c), there exists a flow f ′ such that for

all flows f of this network,
∑
v∈V f

′(s, v) ≥
∑
v∈V f(s, v).

Proof. Let E = {e1, e2 . . . em}. We can think of any flow f as a m-tuple:

(f(e1), f(e2) . . . f(em)). Let S ⊆ Rm be the set of all flows defined on the

network. Since 0 ∈ S, S 6= ∅. For any f ∈ S, 0 ≤ f(ej) ≤ c(ej) for each j such

that 1 ≤ j ≤ m. Furthermore, the flow conservation constraints are of the form:

m∑
j=1

aif(ei) = 0

where ai ∈ {−1, 0, 1}. Thus, S is the intersection of finitely many hyperplanes

12

s

b

a c

d

t

7

6

3

4

10 2

2

8

6

6

Figure 1: A network with cuts.

and finitely many halfspaces. This implies that it is closed. Since S is clearly

bounded, it is compact. Define a function g : S 7→ R as follows

g(f(e1), f(e2) . . . f(em)) : =
∑
v∈V

f(s, v)

Clearly, g is continuous. Since S is compact, g attains it maximum at some

point which corresponds to a flow, say f ′. That is, for all the flows f in the

solution space,

g(f ′(e1), f ′(e2) . . . f ′(em)) ≥ g(f(e1), f(e2) . . . f(em))

This implies that
∑
v∈V f

′(s, v) ≥
∑
v∈V f(s, v) for all flows f , completing the

proof of the lemma.

Consider the network illustrated in Figure 1. Since we are trying to maximise

the cost of the flow through this network, we try to find an upper bound for the

flow, and then look to make this upper bound as tight as possible. Since the

flow has to “reach” t, it has to be constrained by the sum of the capacities of the

arcs incident on t. Thus, we get our first upper bound: 6 + 8 = 14. Similarly, it

is bounded by the sum of the capacities of the arcs emerging from s. This gives

us a better bound: 7 + 6 = 13. It is natural to expect that it is bounded by the

sum of the capacities of edges going from a set containing s to a set containing

t. In our example, it will be bounded by 4+8 = 12. We now prove this formally.

First, we define a few terms and prove a useful theorem.

Definition. A cut of the graph is any subset A of V containing s and not

13

containing t. The cost of the cut, c(A), to be defined as follows:

c(A) =
∑
u∈A

∑
v/∈A

c((u, v))

while the net flow out of the cut, f(A), is as follows:

f(A) =
∑
u∈A

∑
v/∈A

f((u, v))−
∑
v/∈A

∑
u∈A

f((v, u))

Problem (Minimum Cut). Given a network (G(V,E), c), find a cut A of this

network which has the minimum cost.

Since there are finitely many cuts (O(2|V |) many), there exists a cut with the

minimum cost.

Theorem 1.11. Let f be a flow of a network (G(V,E), c) and A be a cut of G.

Then, the net flow out of the cut is equal to the cost of the flow.

Proof. Let A′ = A \ {s}. For any u ∈ A′, we have∑
v∈V

f((u, v)) =
∑
w∈V

f((w, u))

=⇒
∑
v1∈A

f((u, v1)) +
∑
v2 /∈A

f((u, v2)) =
∑
w1∈A

f((w1, u)) +
∑
w2 /∈A

f((w2, u))

=⇒
∑
v2 /∈A

f((u, v2))−
∑
w2 /∈A

f((w2, u)) =
∑
w1∈A

f((w1, u))−
∑
v1∈A

f((u, v1))

Summing over all such u, the left-hand side of last equality becomes:∑
u∈A′

∑
v2 /∈A

f((u, v2))−
∑
w2 /∈A

∑
u∈A′

f((w2, u)) = f(A)−
∑
v2 /∈A

f((s, v2))

The right-hand side becomes:∑
u∈A′

(∑
w1∈A

f((w1, u))−
∑
v1∈A

f((u, v1))
)

=
∑
u∈A′

(∑
w1∈A′

f((w1, u))−
∑
v1∈A

f((u, v1))
)

+
∑
v1∈A

f((s, v1))

=
∑
u∈A′

(∑
w1∈A′

f((w1, u))−
∑
v1∈A′

f((u, v1))
)

+
∑
v1∈A

f((s, v1))

14

=
∑
u∈A′

∑
w1∈A′

f((w1, u))−
∑
u∈A′

∑
v1∈A′

f((u, v1)) +
∑
v1∈A

f((s, v1))

=
∑
v1∈A

f((s, v1))

Equating the two sides, we get:

f(A)−
∑
v2 /∈A

f((s, v2)) =
∑
v1∈A

f((s, v1)) =⇒ f(A) =
∑
v∈V

f((s, v))

This completes the proof of this theorem.

Lemma 1.12. Let f be a flow of a network (G(V,E), c) and A be a cut of G.

Then, the cost of the flow is at most the cost of the cut.

Proof. By Theorem 1.11, we have∑
v∈V

f((s, v)) = f(A)

=
∑
u∈A

∑
v/∈A

f((u, v))−
∑
v/∈A

∑
u∈A

f((v, u))

≤
∑
u∈A

∑
v/∈A

f((u, v))

≤
∑
u∈A

∑
v/∈A

c((u, v))

≤ c(A)

This completes the proof of the lemma.

If there exists a flow f ′ whose cost is equal to the cost of a cut, then this cut

must have the minimum cost and the flow must be optimal. We now prove there

indeed exists a cut whose cost is the same as the cost of an optimal flow.

Theorem 1.13. Let f ′ be an optimal flow of a network (G(V,E), c). There

exists a cut A of this network such that c(A) =
∑
v∈V f

′((s, v)).

Proof. We construct a network (G′(V, V 2), c′) where the capacity function c′ is

defined as follows:

c′((u, v)) = c((u, v))− f ′((u, v)) + f ′((v, u)) (1.8)

15

Note that c′ is indeed a capacity function of G′. Let A be the set of vertices in

V such that there exists a path p from s to v in G′ such that c′(e) > 0 for all

e ∈ p. Clearly, s ∈ A. t /∈ A as otherwise f ′ would not be the maximum flow.

Thus, A is a cut of G. By Theorem 1.11, we have∑
v∈V

f ′((s, v)) = f ′(A) =
∑

u∈A,v/∈A

f ′((u, v))−
∑

v/∈A,u∈A

f ′((v, u)) (1.9)

Consider f ′((u, v)) where u ∈ A and v /∈ A. Since u ∈ A, there exists a

path p from s to u such that c′(e) > 0 for all e ∈ p. If c′((u, v)) > 0, then

v ∈ A since p ∪ {(u, v)} would be a path from s to v containing edges with

non-zero capacity values. This is a contradiction to our initial assumption that

v /∈ A. Thus, c′((u, v)) = 0. Substituting for this term in Equation (1.8), we

get f ′((u, v)) = c((u, v)) + f ′((v, u)). Thus, Equation (1.9) becomes∑
v∈V

f ′((s, v)) =
∑
u∈A

∑
v/∈A

f ′((u, v))−
∑
v/∈A

∑
u∈A

f ′((v, u))

=
∑
u∈A

∑
v/∈A

c((u, v)) +
∑
u∈A

∑
v/∈A

f ′((v, u))−
∑
v/∈A

∑
u∈A

f ′((v, u))

= c(A)

As observed after the proof of Lemma 1.12, this implies that A is an optimal

cut and that the minimum cost of a cut is exactly the same as the value of the

maximum flow in a network.

In the rest of the section, we will prove that the Max-Flow problem can be

modeled as a linear program and its dual is indeed the Min-Cut problem.

The LP of the Max-Flow problem is straightforward to derive from its defini-

tion:

Maximize
∑
v∈V

f((s, v)) subject to (1.10)

f(e) ≥ 0 for all e ∈ E

f(e) ≤ c(e) for all e ∈ E∑
u∈V

f((u, v)) =
∑
w∈V

f((v, w)) for all v ∈ V \ {s, t}

We will construct the dual of this LP by constructing an equivalent LP (System

16

1.11) and taking its dual (System 1.12). We will finally prove that System 1.12

is indeed equivalent to the Min-Cut problem in Theorem 1.17. We first prove

a few lemmas to help with these constructions.

Lemma 1.14. Let f be a flow of a network (G(V,E), c) such that all the paths

from s to t have an edge e in them such that f(e) = 0. Then, the cost of the

flow is 0.

Proof. Let A be the set of vertices that can be reached using a path from s such

that the flow through each edge of the path is greater than 0. Then, s ∈ A

and t /∈ A implying that A is a cut. f((u, v)) = 0 for all u ∈ A and v /∈ A as

otherwise v would be in A. We have,

f(A) =
∑
u∈A

∑
v/∈A

f((u, v))−
∑
v/∈A

∑
u∈A

f((v, u)) ≤
∑
u∈A

∑
v/∈A

f((u, v)) ≤ 0

By Theorem 1.11,∑
v∈V

f((s, v)) = f(A) ≤ 0 =⇒
∑
v∈V

f((s, v)) = 0

This completes the proof of the lemma.

Theorem 1.15. Given any flow f of a network (G(V,E), c), there exists k-many

flows f1, f2 . . . fk on this network, corresponding to k-many paths p1, p2 . . . pk

from s to t, such that:

(i) k ≤ |E|.

(ii) fi((u, v)) > 0 if, and only if (u, v) ∈ pi for all 1 ≤ i ≤ k.

(iii) The sum of costs of the fi’s is the cost of f .

(iv)
∑k
i=1 fi((u, v)) ≤ f((u, v)) for all (u, v) ∈ E.

Proof. We construct the fi’s by using Lemma 1.14 by the following procedure:

• r : E 7→ R

• r ← f

• i← 1

• while the cost of r > 0 do

17

– Find a path pi from s to t such that r(e) > 0 for all e ∈ pi

– Define fi : E 7→ R as follows: fi(e
′) = mine∈pi r(e) for all the e′ ∈ pi

and fi(e
′) = 0 otherwise

– r(e)← r(e)− fi(e) for each e ∈ E

– i← i+ 1

Claim 1.15.1. Let r(l) be the function r in the lth iteration of this procedure.

Then, for any l ∈ N, r(l) is a flow.

Proof. We prove this by induction on l. Clearly, r(1) = f is a flow. Now, assume

that r(l−1) is a flow. By construction, fl−1(e) ≤ r(l−1)(e) for all e ∈ pl−1 and

fl−1(e) = 0 ≤ r(l−1)(e) for all e /∈ pl−1. Thus, r(l)(e) ≥ 0 for all e ∈ E. Also,

clearly, r(l)(e) ≤ r(l)(e) ≤ c(e) for all e ∈ E. Let u ∈ V \ {s, t}. If u is not

incident on any e ∈ pl, then∑
v∈V

r(l)((u, v)) =
∑
v∈V

r(l−1)((u, v)) =
∑
v∈V

r(l−1)((v, u)) =
∑
v∈V

r(l)((v, u))

Assume that u is incident on an edge e1 = (u, v1) ∈ pl. Then, the only other

edge u is incident on is the previous edge describing pl, say e2 = (v2, u). Then,

since r(l)((u, v)) = r(l−1)((u, v1))− fl((u, v1)), we have,∑
v∈V

r(l)((u, v)) =
∑
v∈V

r(l−1)((u, v))− fl((u, v1))

=
∑
v∈V

r(l−1)((v, u))− fl((u, v1)) (Induction hypothesis)

=
∑
v∈V

r(l−1)((v, u))− fl((v2, u)) (fl((u, v1)) = fl((v2, u)))

=
∑
v∈V

r(l)((v, u))

Thus, r(l) remains a flow throughout the course of this procedure. 3

Note that this procedure is indeed an algorithm since in an iteration l, r(l)(e)

is 0 for at least one edge e ∈ E with r(l−1)(e) > 0. Thus, the algorithm runs

k-many times where k ≤ |E|. Also, note that at each iteration of the algorithm,

we can find a path from s to t called pl such that r(l)(e) > 0 for all e ∈ pl

by a direct consequence of Lemma 1.14. It is also clear that the fis that are

constructed are indeed flows for all 1 ≤ i ≤ k.

18

This proves that this collection of flows and paths satisfy the first two parts

of the theorem. Since the algorithm runs until the cost of r drops to 0 and

it reduces the cost of r by the cost of fi at each step i, the third part of the

theorem is also satisfied by these flows and paths. Part (iv) of the theorem

is true since the algorithm removes the minimum flow through an edge of the

chosen path in each iteration.

We will use Theorem 1.15 to prove that the value of the optimal values of

the objective functions of Systems 1.10 and 1.11, which follows, are the same.

Even though these two LPs are not equivalent in the strictest sense of the

definition, we prove that using the decomposition of a flow into paths described

in Theorem 1.15, we can identify a flow with a set of paths and the vice versa.

We abuse our definition of equivalence and call these LPs equivalent.

Let P denote the set of all paths from s to t in a network (G(V,E), c).

Maximize
∑
p∈P

xp subject to (1.11)

xp ≥ 0 for all p ∈ P∑
p:e∈p

xp ≤ c(e) for all e ∈ E

Lemma 1.16. System 1.10 and System 1.11 are equivalent linear programs.

Proof. Let f be a feasible solution of System 1.10. Then, by Theorem 1.15,

there exists k-many flows, where k ≤ |E|, f1, f2 . . . fk corresponding to paths

p1, p2 . . . pk which are from s to t. For p ∈ P, define xp as follows:

xp =

cost of fp if p ∈ {p1, p2 . . . pk}

0 if p /∈ {p1, p2 . . . pk}

By Theorem 1.15, {xp}p∈P is a feasible solution of System 1.11 and
∑
p∈P xp =∑

v∈V f((s, v)).

Let {xp}p∈P be a feasible of System 1.11. Define f : E 7→ R as follows:

f(e) =
∑
p:e∈p

xp

19

Clearly, 0 ≤ f(e) ≤ c(e) for all e ∈ E. For some v ∈ V \ {s, t}, note that∑
u∈V

f((u, v)) =
∑
u∈V

∑
p:(u,v)∈p

xp

=
∑

p:v∈V (p)

xp

=
∑
w∈V

∑
p:(v,w)∈p

xp

=
∑
w∈V

f((v, w))

Thus, the f we defined is indeed a feasible solution of System 1.10. This proves

that Systems 1.10 and 1.11 are equivalent.

Constructing the dual of System 1.11 is straightforward:

Minimize
∑
e∈E

yec(e) subject to (1.12)

ye ≥ 0 for all e ∈ E∑
e∈p

ye ≥ 1 for all p ∈ P

We prove that the optimal solution of System 1.12 is equal to the capacity of

the minimum cut in the theorem that follows.

Theorem 1.17. The optimal solution of System 1.12 is equal to that of the

Min-Cut problem.

Proof. First, we prove that an arbitrary cut A of a network (G(V,E), c) corre-

sponds to a feasible solution of System 1.12. Let y(u,v) = 1 for all u ∈ A, v /∈ A
and 0 for all other y(u,v). It is easy to see, by induction on the length of a path

p ∈ P, that there exists a edge (u, v) ∈ p such that u ∈ A and v /∈ A. Thus,∑
e∈p ye ≥ 1 for any path p ∈ P. This proves that {ye}e∈E is a feasible solution

of System 1.12. Thus, the optimal solution of System 1.12 is bounded above by

the capacity of the minimal cut.

To complete this proof, given any feasible solution {ye}e∈E of System 1.12, we

produce a cut whose capacity is at most
∑
e∈E yec(e). For a v ∈ V , let Pv be

20

the set of paths from s to v. Note that Pt = P. Define d : V 7→ R as follows:

d(v) = min
p∈Pv

∑
e∈p

ye

If (u, v) ∈ E, then,

d(v) ≤ d(u) + y(u,v) =⇒ d(v)− d(u) ≤ y(u,v) (1.13)

Pick a t ∈ [0, 1) universally at random. Let A = {v | d(v) ≤ t}. Clearly, s ∈ A
and t /∈ A implying that A is a cut of G. Thus,

c(A) =
∑

u∈A,v/∈A

c((u, v)) =
∑

(u,v)|d(u)≤t<d(v)

c((u, v))

The expected value of the capacity can be calculated as follows:

ET∼U [0,1)c(A) =
∑

(u,v)∈E

c((u, v)) ·Pr[d(u) ≤ t < d(v)]

=
∑

(u,v)∈E

c((u, v)) · (d(v)− d(u))

≤
∑

(u,v)∈E

y(u,v)c((u, v)) (Equation (1.13))

Thus, there exists a cut, say A′, such that c(A′) ≤
∑
e∈E yec(e). Which implies

the optimal solution of System 1.12 is bounded below by the capacity of the

minimal cut. This proves that the optimal solution of System 1.12 is exactly

the capacity of a minimal cut.

By the Strong Duality Theorem, this is exactly the optimal solution of the ob-

jective function of System 1.11 and thus, by Lemma 1.16, of System 1.10.

2 The Strong Duality Theorem

In this section, we prove the Strong Duality Theorem in Theorem 2.7. To prove

this theorem, we first prove the following lemmas from analysis.

Lemma 2.1 (Weierstrass’ Theorem). Let X ⊆ Rn be a compact set and

f : X 7→ R be a continuous function. Then, there exists a x0 ∈ X such that

f(x0) ≤ f(x) for all x ∈ X.

21

Proof. Since X is compact and f is continuous, f(X) is compact. Thus, it is

closed and bounded. This implies that there exists a x0 ∈ X where f attains

its minimum value.

Lemma 2.2 (Projection Lemma). Let X ⊆ Rn be a non-empty, closed,

convex set and y be a point outside X. Then, there exists a x0 ∈ X such that

d(y, x0) ≤ d(y, x) for all x ∈ X. Here, d(u, v) := ||u − v||2 for all u, v ∈ Rn.

Furthermore, for all x ∈ X, 〈y − x0, x− x0〉 ≤ 0.

Proof. Since X 6= ∅, there is a x′ ∈ X. Let r = d(y, x′). Let Br(y) denote the

closed ball of radius r around y and let X ′ = X∩Br(y). Clearly, X ′ is closed and

bounded. Thus, it is compact. Furthermore, the minimum value of the distance

function, if attained, must be attained inside X ′. Since f : X ′ 7→ R defined by

f(x) = d(y, x) is a continuous function, by Weierstrass’ Theorem, there exists

an x0 ∈ X ′ which minimizes f in X ′. Thus, x0 minimizes the distance between

y and the set X.

Now, since X is convex, for all x ∈ X and α ∈ (0, 1), x0 +α(x−x0) ∈ X. Since

d(y, x0) ≤ d(y, x′) for all x′ ∈ X, we have,

||y − x0||2 ≤ ||y − x0 − α(x− x0)||2

≤ ||y − x0||2 + α2||x− x0||2 − 2α〈y − x0, x− x0〉

Thus,

〈y − x0, x− x0〉 ≤
α

2
||x− x0||2

As α can be as small as we require, 〈y − x0, x− x0〉 ≤ 0.

Lemma 2.3 (Hyperplane Separation Lemma). Let X ⊆ Rn be a non-

empty, closed, convex set and y /∈ X. Then, there exists a hyperplane H = {h |
〈a, h〉 = γ} with a ∈ Rn and γ ∈ R such that 〈x, a〉 ≥ γ for all x ∈ X and

〈y, a〉 < γ.

Proof. By the Projection Lemma, there is a x0 ∈ X such that 〈y−x0, x−x0〉 ≤ 0

for all x ∈ X. Let a = x0 − y and γ = 〈a, x0〉. Then, for a x ∈ X,

0 ≥ 〈y − x0, x− x0〉

= 〈−a, x− x0〉

22

= 〈−a, x〉+ 〈a, x0〉

= 〈−a, x〉+ γ

Thus, 〈a, x〉 ≥ γ. Also,

〈a, y〉 = 〈a, x0 − a〉

= 〈x0 − y, x0〉 − 〈a, a〉

= γ − ||a||2

= γ − ||x0 − y||2

< γ (y 6= x0)

Thus, the hyperplane H = {h | 〈a, h〉 = γ} separates X and y.

As defined previously, we let Xj denote the set {x = (x1, x2 . . . xj) ∈ Rj | xi ≥
0 for all 1 ≤ i ≤ j} for a j ∈ N.

Theorem 2.4. Let A : Rp 7→ Rq be a linear map. Then, A(Xp) is closed.

Proof. Let {yn} be a sequence in A(Xp) which converges to a point y ∈ Rq. We

prove that y ∈ A(Xp). Let In = {x ∈ Xp | A(x) = yn}. Since Xp is closed

and A−1({yn}) is closed, In is closed. Also, by definition, it is not empty. Since

|| · ||2 is bounded below and is continuous, there exists a xn ∈ In such that

||xn|| = inf
x∈In

||x||

If {xn} is bounded, then it has a subsequence {xnk
} such that {xnk

} converges

to some x′ ∈ Rp. Since each xnk
∈ X, x′ ∈ Xp as Xp is closed. Also, by

definition A(xnk
) = ynk

. This implies that A(x′) = y since {ynk
} converges to

y and A is continuous. Thus, y ∈ A(Xp).

Now, assume that {xn} is unbounded. We prove that this contradicts our

assumption that xn has the least norm in In for all n ∈ N.

Since ||xn|| → ∞, there exists M0 ∈ N such that ||xn|| > 1 for all n ≥M0. For

all such n, define unit vectors zn by zn = xn

||xn|| . Since {zn} is bounded, there

23

exists {znk
}, a subsequence, which converges to some unit vector z ∈ Rn. Since

A(znk
) =

A(xnk
)

||xnk
||

=
ynk

||xnk
||

and {ynk
} converges to y while {xnk

} diverges, A(z) = limnk→∞A(znk
) = 0.

We first prove that there exists a N ∈ N such that xnk
− z ∈ Ink

for all k ≥ N .

Then, we prove that there exists a P ≥ N for which ||xP − z|| < ||xP ||. This

will contradict our assumption that xP is a minimal normed vector of IP .

Claim 2.4.1. There exists a N ∈ N such that xnk
− z ∈ Ink

for all k ≥ N .

Proof. For any v ∈ Rp, we have, vi, for 1 ≤ i ≤ p, denote the ith coordinate of

v. Let J = {i | zi > 0 where 1 ≤ i ≤ p}. For all i /∈ J ,

(xn − z)i = (xn)i − zi ≥ (xn)i ≥ 0

Let i ∈ J . For n ≥ M0, xn = ||xn|| · (zn). Thus, (xn)i = ||xn|| · (zn)i. Since

zi > 0, there is a N0 ∈ N such that for all n ≥ N0, (zn)i > 0. Since ||xn|| blows

up to infinity, there exists a Ni ≥ M0 such that (xnk
)i − (znk

)i > zi for all

k ≥ Ni. Also, since (znk
)i → zi, there is a Mi ≥M0 such that |(znk

)i− zi| < zi
2

for all k ≥Mi.

Let N = max{N1, N2 . . . Np,M1,M2 . . .Mp}. Then, for all k ≥ N , for all i ∈ J ,

(xnk
)i − zi >

zi
2
> 0

This implies that xnk
−z ∈ Xp for all such k. Since A(z) = 0, A(xnk

−z) = ynk
.

Thus, xnk
− z ∈ Ink

for all k ≥ N . 3

Claim 2.4.2. ||xP − z|| < ||xP || for some P ≥ N , P ∈ N.

Proof. We know, if θn is the angle between the vectors xn and z,

||xn − z||2 = ||xn||2 + ||z||2 − 2〈xn, z〉

= ||xn||2 + 1− 2||xn|| · ||z||θn
= ||xn||2 + 1− 2||xn||θn (2.1)

Since zn is defined to be xn

||xn|| for all n ≥ M0, θn is also the angle between

zn and z. Define f : Rp 7→ R by f(v) = 〈v, z〉 = ||v|| · cos(θ) where θ is the

24

angle between v and z. Clearly, f is continuous. Since {znk
} → z, {f(znk

)}
converges to ||z||2 = 1. Also, f(znk

) = cos(θnk
). This implies that {cos(θnk

)}
converges to 1. Thus, for some P ≥ N , cos(θP) > 1

2 . Substituting for cos(θP)

in Equation (2.1), we have ||xP − z||2 < ||xP ||2. 3

Thus, xP − z ∈ IP and ||xP − z|| < ||xP ||. This contradicts our assumption

that ||xP || = infx∈IP ||x||. This implies that our supposition requiring {xn} to

be unbounded is incorrect. This completes the proof of the theorem.

Theorem 2.4 can be extended to normed linear spaces over R. This is done in

the Appendix of the report.

Lemma 2.5 (Farkas’ Lemma I). Let A ∈ M(n,m) and b ∈ Rn. Then,

exactly one of these two linear programs have a solution:

Ax = b (2.2)

x ∈ Xm

〈b, y〉 < 0 (2.3)

AT y ∈ Xm

y ∈ Rn

Proof. First, we prove that both the systems cannot be feasible at the same

time. Assume otherwise. Then, there exists and x ∈ Xm and y ∈ Rn such that

0 > 〈b, y〉 = 〈Ax, y〉 = 〈x,AT y〉 ≥ 0

Thus, our supposition is false. Now, assume that System 2.2 is infeasible. We

prove that System 2.3 is feasible. Since System 2.2 is infeasible, b /∈ A(Xm). By

Theorem 2.4, A(Xm) is closed. Clearly, it is also convex and non-empty. By

the Hyperplane Separation Lemma, there exists a ∈ Rn and γ ∈ R such that

〈Ax, a〉 = 〈x,ATa〉 ≥ γ for all x ∈ Xm and 〈b, a〉 < γ. Since 0 ∈ A(Xm), γ is

non-positive. This implies that 〈b, a〉 < 0. We complete the proof by showing

that (ATa)j ≥ 0 for all 1 ≤ j ≤ m. Assume that there is an index p such that

(ATa)p < 0. Let {ej}mj=1 be the usual basis of Rm. Consider the following

x ∈ Rm,

x =

ep if γ = 0

γ
2(AT y)p

ep, if γ < 0

Note that x ∈ Xm in both these cases. Clearly, 〈x,ATa〉 < γ which contradicts

the inference we made using the Hyperplane Separation Lemma.

25

Lemma 2.6 (Farkas’ Lemma II). Let A ∈ M(n,m) and b ∈ Rn. Then,

exactly one of these two linear programs have a solution:

Ax+ s = b (2.4)

x ∈ Xm

s ∈ Xn

〈b, y〉 < 0 (2.5)

AT y ∈ Xm

y ∈ Xn

Proof. Define A0 ∈M(n,m+ n) as follows:

A0 =
(
An,m In,n

)
Then, for y ∈ Rn,

AT0 y ∈ Xn+m =⇒

(
ATm,n

In,n

)
y ∈ Xn+m =⇒ AT y ∈ Xm and y ∈ Xn

Thus, the following two linear programs are equivalent to the ones we are given:

A0 · (x, s)T = b (2.6)

(x, s)T ∈ Xn+m

〈b, y〉 < 0 (2.7)

AT0 y ∈ Xn+m

On applying Lemma 2.5 to the systems above, the result follows.

Theorem 2.7 (Strong Duality). Let x∗ be an optimal solution of the primal

LP (System 2.8) and y∗ be an optimal solution of the dual LP (System 2.9).

Then, 〈b, y∗〉 = 〈c, x∗〉.

Maximize 〈c, x〉 subject to (2.8)

(Ax)i ≤ bi for all 1 ≤ i ≤ n

x ∈ Xm

Minimize 〈b, y〉 subject to (2.9)

(AT y)j ≥ cj for all 1 ≤ j ≤ m

y ∈ Xn

Proof. By the Weak Duality Theorem, we know that 〈b, y∗〉 ≥ 〈c, x∗〉. We prove

that for any α ∈ R such that 〈c, x∗〉 < α, 〈b, y∗〉 < α. This will prove that

〈b, y∗〉 ≤ 〈c, x∗〉 and thus complete the proof of the theorem. Let α ∈ R such

that 〈c, x∗〉 < α. Then, for any feasible solution x of System 2.8, 〈c, x〉 < α.

Thus, 〈−c, x〉 > −α. Consider the following two linear programs.

26

(Ax)i ≤ bi for all 1 ≤ i ≤ n (2.10)

〈−c, x〉 ≤ −α

x ∈ Xm

〈b, y〉 − αz < 0 (2.11)

AT y − cz ∈ Xm

y ∈ Xn

z ∈ R+

By our previous observation, System 2.10 is infeasible. We introduce slack

variables s ∈ Xn and t ∈ R+ so that these programs can we rewritten as

equalities.

Ax+ s = b (2.12)

〈−c, x〉+ t = −α

x ∈ Xm

s ∈ Xn

t ∈ R+

〈b, y〉 − αz < 0 (2.13)

AT y − cz ∈ Xn

y ∈ Xm

z ∈ R+

Define A0 ∈M(m+ 1,m+ n+ 1) as follows:

A0 =

(
Am,n Im,m 0m,1

−cT1,n 01,m 11,1

)

Then,

AT0 =

 ATn,m −cn,1
Im,m 0m,1

01,m 11,1

Now,

AT0

(
y

z

)
∈ Xm+n+1 =⇒

 ATn,m −cn,1
Im,m 0m,1

01,m 11,1

(y

z

)
∈ Xm+n+1

=⇒ AT y − cz ∈ Xn, y ∈ Xm, z ∈ R+

This implies that we can further transform our linear programs as follows:

A0 · (x, s, t)T = (b,−α)T (2.14)

(x, s, t)T ∈ Xm+n+1

〈(b,−α), (y, z)〉 < 0 (2.15)

AT0 · (y, z)T ∈ Xm+n+1

27

Since System 2.10 is infeasible, System 2.14 is infeasible as well. Applying

Farkas’ Lemma I on these two systems, we get that 2.15 is feasible. Let (y′, z′)

be a solution of System 2.15. We consider two cases depending on the value of

z′.

Case 2.7.1 (z′ = 0). Then, the following LP is feasible:

〈b, y〉 < 0

AT y ∈ Xn

y ∈ Xm

Then, by Farkas’ Lemma II, the following LP is infeasible:

Ax+ s = b

x ∈ Xm

s ∈ Xn

This implies that the solution space of the following LP is empty:

(Ax)i ≤ bi for all 1 ≤ i ≤ n

x ∈ Xm

Which implies that there exists no solution to the primal. This contradicts our

assumption that x∗ exists.

Case 2.7.2 (z′ > 0). Since (y′, z′) is a solution to System 2.15, it is a solution

of System 2.11. Multiplying (y′, z′) by 1
z′ , we obtain another solution of System

2.11: (y0, 1) where y0 = y′

z′ . Thus, by the first constraint of that system,

〈b, y0〉 < α. Since y∗ minimizes 〈b, y〉, 〈b, y∗〉 ≤ 〈b, y0〉 < α.

Since this is true for an arbitrary α ∈ R, 〈b, y∗〉 ≤ 〈c, x∗〉. Clubbing this result

with the Weak Duality Theorem, we get that 〈b, y∗〉 = 〈c, x∗〉 which completes

the proof of this theorem.

3 Positive Operators on Real Vector Spaces

In this section, we let V be a real, finite-dimensional vector space and L(V)

denote the set of linear functions from V to V . We let n be the dimension of

28

V . We treat a X ∈ L(V) both as an operator and as a matrix as the situation

demands. It will be clear from the context if X is being treated as an operator

or its corresponding matrix.

Definition. X ∈ L(V) is said to be self-adjoint if the adjoint of X is X itself.

That is, 〈Xv,w〉 = 〈v,Xw〉 for all v, w ∈ V .

We will use the following well known theorems of Linear Algebra. We state

them without their proofs. The author refers the reader to [1] and [2] for the

proofs of these theorems.

Theorem 3.1. X ∈ L(V) is a self-adjoint operator if, and only if, X is a

symmetric matrix.

Theorem 3.2 (Real Spectral Theorem). Let X ∈ L(V). Then, the follow-

ing statements are equivalent:

(i) X is self-adjoint.

(ii) V has an orthonormal basis consisting of the eigenvectors of X.

(iii) X has a diagonal matrix with respect to some orthonormal basis of V .

We now state the definition of a positive semidefinite operator and a positive

operator.

Definition. The operator X ∈ L(V) is positive semidefinite if 〈Xv, v〉 ≥ 0 for

all v ∈ V .

Definition. An operator on V is positive if it is both self-adjoint and positive

semidefinite.

Before we prove the theorem which describes the equivalent conditions for an op-

erator to be positive, we define the notion of a square root of an operator.

Definition. An operator R on V is called a square root of X ∈ L(V) if R2 = X.

Theorem 3.3. Let X ∈ L(V). Then, the following statements are equivalent:

(i) X is positive.

(ii) X is self-adjoint and all the eigenvalues of X are non-negative.

(iii) X has a positive square root.

(iv) X has a self-adjoint square root.

29

(v) There exists R ∈ L(V) such that X = RTR.

(vi) X =
∑n
i=1 λiwiw

T
i where λi ≥ 0 for all i and {wi}ni=1 is an orthonormal

set in Rn (wis are column vectors).

Proof. We prove that (i) through (v) are equivalent by proving that (i) ⇒ (ii)

⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i). Then, we separately show that (i) and (vi) are

equivalent.

Let X be a positive operator. Then, by definition, X is self-adjoint. Let λ be

an eigenvalue of X. Then, there exists a non-zero v ∈ V such that X(v) = λv.

Since X is positive semidefinite,

〈Xv, v〉 ≥ 0 =⇒ 〈λv, v〉 ≥ 0 =⇒ λ〈v, v〉 ≥ 0 =⇒ λ ≥ 0

This proves that (i) ⇒ (ii).

Now, assume (ii). Since X is self-adjoint, by part (ii) of Theorem 3.2, V has

an orthonormal basis consisting of the eigenvectors of X. Let {wi}ni=1 be the

orthonormal set of eigenvectors of X (this is unique up to the ordering of the

set). Let {λi}ni=1 be the set of eigenvectors of X corresponding to the wis.

Since the eigenvalues are non-negative,
√
λi exists in R. Define R ∈ L(V) by

R(wi) =
√
λiwi. Clearly, R2(wi) = X(wi) for all 1 ≤ i ≤ n. Thus, R is a square

root of X. Let v ∈ V . Then, v =
∑n
i=1 αiwi where αi ∈ R for all 1 ≤ i ≤ n.

Then, if δi,j represents the Kronecker delta,

〈R(v), v〉 = 〈R(

n∑
i=1

αiwi),

n∑
j=1

αjwj〉

=

n∑
i,j=1

αiαj〈R(wi), wj〉

=

n∑
i,j=1

αiαj
√
λi〈wi, wj〉

=

n∑
i,j=1

δi,jαiαj
√
λi

=

n∑
i=1

α2
i

√
λi

≥ 0

30

This proves that R is positive semidefinite. It is also clear that R is self-adjoint.

Thus, R is a positive square root of X. This proves (iii).

(iii) ⇒ (iv) follows directly as does (iv) ⇒ (v). We now prove that (v) ⇒ (i).

Let X = RTR for some R ∈ L(V). Then, for any v ∈ V ,

〈X(v), v〉 = 〈RTR(v), v〉 = 〈R(v), R(v)〉 ≥ 0

Thus, X is positive semidefinite. Clearly, XT = RTR = X. Thus, X is self-

adjoint. This proves (i).

Finally, we prove that (i) ⇐⇒ (vi). Assume that X is positive. Then, X is

self-adjoint. By part (ii) of Theorem 3.2, V has an orthonormal basis consisting

of the eigenvectors of X. Let {wi}ni=1 be the orthonormal set of eigenvectors

of X. Let W be the matrix whose columns, in order, are wi. By part (iii) of

Theorem 3.2, X = WDW−1 where D is a diagonal matrix with diagonal entries

{λi}ni=1 where λi is the eigenvalue corresponding to the eigenvector wi. By part

(ii) of this theorem, λi ≥ 0 for all 1 ≤ i ≤ n. Since {wi}ni=1 is an orthonormal

set, WTW = WWT = I. Thus, WT = W−1. Thus, X = WDWT . Then,

X = WDWT = W · (
n∑
i=1

λieie
T
i) ·WT =

n∑
i=1

λiW · (eieTi) ·WT =

n∑
i=1

λiwiw
T
i

This proves (vi).

Now, assume that (vi) is true. That is, X =
∑n
i=1 λiwiw

T
i where λi ≥ 0 for

all i and {wi}ni=1 is an orthonormal set in Rn. Then, clearly, XT = X =∑n
i=1 λiwiw

T
i . Thus, X is self-adjoint. Let v ∈ V . Then,

〈Xv, v〉 = 〈
n∑
i=1

λiwiw
T
i v, v〉 =

n∑
i=1

λi〈wiwTi v, v〉 =

n∑
i=1

λi〈wTi v, wTi v〉 ≥ 0

The last inequality follows since λi ≥ 0 for all 1 ≤ i ≤ n. Thus, X is positive

semidefinite. This implies that X is a positive operator which proves (i).

Theorem 3.4. A positive operator on V has a unique positive square root.

Proof. Let X ∈ L(V) be a positive operator and v be an eigenvalue of X (such

a v exists by Theorem 3.2). Let λ be the eigenvalue of X corresponding to v.

Then, by Theorem 3.3, λ ≥ 0. By the same theorem, we also know that there

31

exists a positive square root, say R, of X. We prove that Rv =
√
λv. This will

indeed prove that R is unique since the eigenvalues of X form a basis of V by

Theorem 3.2.

Since R is a positive operator, by Theorem 3.2, the eigenvectors of R, say

{ui}ni=1, form an orthonormal basis of V . Furthermore, its eigenvalues are non-

negative. Thus, there exists {λi}ni=1, a set of non-negative reals, such that

Rui =
√
λiui for all 1 ≤ i ≤ n. Since the uis form a basis of V , we can write

v =
∑n
i=1 αiui for some αi ∈ R for all 1 ≤ i ≤ n. Thus,

Rv =

n∑
i=1

αi
√
λiui =⇒ R2v =

n∑
i=1

αiλiui

=⇒ Xv =

n∑
i=1

αiλiui

=⇒ λv =

n∑
i=1

αiλiui

=⇒
n∑
i=1

αiλui =

n∑
i=1

αiλiui

=⇒
n∑
i=1

αi(λ− λi)ui = 0

=⇒ αi(λ− λi) = 0 for all 1 ≤ i ≤ n

Let I = {i | 1 ≤ i ≤ n and αi 6= 0}. Then, for all i ∈ I, λi = λ. Also,

v =
∑n
i=1 αiui =

∑
i∈I αiui. Thus,

Rv =
∑
i∈I

αi
√
λiui =

∑
i∈I

αi
√
λui =

√
λ
∑
i∈I

αiui =
√
λv

This completes the proof of this theorem.

4 Semidefinite Programming

A semidefinite program, abbreviated as SDP, is similar to a LP in that we

are required to maximize or minimize a linear function subject to some linear

constraints. In addition, the square matrix corresponding to the variables is

positive. Formally, given m and n ∈ N; bk, a
(k)
i,j , ci,j ∈ R for all 1 ≤ i, j ≤ n,

32

1 ≤ k ≤ m;

Maximize or minimize

n∑
i,j=1

ci,jxi,j subject to (4.1)

n∑
i,j=1

a
(k)
i,j xi,j = bk for all 1 ≤ k ≤ m

xi,j ∈ R for all 1 ≤ i, j ≤ n

X = (xi,j) is a positive operator

It is known that SDPs can be solved, up to an additive error of ε, in time

polynomial in the size of the input and log(1
ε) [8].

Semidefinite programming is often used in the form of vector programming where

the variables are elements in Rn, for some n ∈ N, and the objective function

and the constraints are linear in the inner product of these vectors. Formally,

given m and n ∈ N; bk, a
(k)
i,j , ci,j ∈ R for all 1 ≤ i, j ≤ n, 1 ≤ k ≤ m; we are

required to

Maximize or minimize

n∑
i,j=1

ci,j〈vi, vj〉 subject to (4.2)

n∑
i,j=1

a
(k)
i,j 〈vi, vj〉 = bk for all 1 ≤ k ≤ m

vi ∈ Rn for all 1 ≤ i ≤ n

Lemma 4.1. Systems 4.1 and 4.2 are equivalent.

Proof. Let X be a solution of System 4.1. Then, since X is positive, by Theo-

rem 3.3, it has a positive square root. That is, X = V 2 = V TV for some positive

operator V . Let {vi}ni=1 be the columns, in order, of V . Then, by construction,

〈vi, vj〉 = xi,j . Thus, {vi}ni=1 is a feasible solution of System 4.2.

Now, consider {vi}ni=1, a feasible solution of System 4.2. Define X = (xi,j)

where xi,j = 〈vi, vj〉. Then, if V is the matrix whose columns are {vi}ni=1,

X = V TV . Thus, by Theorem 3.3, X is a positive operator. This implies that

System 4.1 and System 4.2 are equivalent.

In the rest of this section, we will look at the Max-Cut problem and present

33

two approximation algorithms for it. We will first describe a simple, randomized
1
2 -approximation algorithm for the problem and then use semidefinite program-

ming to design a 0.878-approximation algorithm for it. This algorithm was

presented by Vandenberghe and Boyd in their seminal work on using semidefi-

nite programming to solve optimization problems [5].

Problem. Let G(V,E) be an undirected graph where V = {v1, v2 . . . vn} and

w : E 7→ R+ be a weight function defined on G. For a e = (vi, vj) ∈ E, we use

we or wi,j to denote w(e). A subset U of V is called a cut of G. We define

Cut(U) = {e = (vi, vj) ∈ E | vi ∈ U and vj /∈ U} and the weight of U to be∑
e∈Cut(U) we. Find a cut U ′ of G which has the maximum weight.

Algorithm 4.2. Given a graph G(V,E) where V = {v1, v2 . . . vn}, place a

vertex vi ∈ V into a set U independently with probability 1
2 . Report U . 4

Lemma 4.3. Algorithm 4.2, after derandomization, is a 1
2 -approximation algo-

rithm for the Max-Cut problem.

Proof. Define Xe to be the random variable that takes 1 if e ∈ Cut(U) and

0 otherwise. Define Y =
∑
e∈E weXe. Clearly, Y is the random variable that

takes the value of the weight of the cut U . Now,

E[Y] = E[
∑
e∈E

weXe] =
∑
e∈E

weE[Xe] =
∑
e∈E

wePr[e ∈ Cut(U)] (4.3)

For e = (vi, vj) ∈ E, the probability that e ∈ Cut(U) is the probability that

exactly one of vi and vj are in U . Thus, Pr[e ∈ Cut(U)] = 1
2 . Substituting for

this in Equation (4.3), we get that

E[Y] =
1

2

∑
e∈E

we ≥
1

2
opt

where opt is the optimal value of this Max-Cut instance. Thus, after deran-

domization, Algorithm 4.2 produces a 1
2 -approximate solution for the Max-Cut

problem.

Now we move onto describing a SDP based algorithm to solve Max-Cut. First,

we claim that System 4.4 models the Max-Cut problem. Then, we give a SDP

relaxation of System 4.4 in System 4.5. We will prove that this relaxation admits

an algorithm (Algorithm 4.6) which can be solved in polynomial time and prove

34

that this algorithm has an approximation factor of 0.878 in Theorem 4.7.

Lemma 4.4. The following system models the Max-Cut problem.

Maximize
1

2

∑
(vi,vj)∈E

wi,j(1− yiyj) subject to (4.4)

yi ∈ {−1, 1} for all 1 ≤ i ≤ n

Proof. Consider U ⊆ V , a cut of the graph. Let

yi =

1 if vi ∈ U

−1 if vi /∈ U

Clearly, this is a feasible solution of System 4.4. Similarly, given a solution of

4.4, we let U be the set of all vertices vi such that yi = 1. This is a cut. Now,

1

2

∑
(vi,vj)∈E

wi,j(1− yiyj) =
1

2

∑
(i,j)|yiyj=−1

wi,j(1− yiyj)

=
∑

(vi,vj)∈Cut(U)

wi,j

=
∑

(vi,vj)∈Cut(U)

wi,j

Thus, the objective function of 4.4 maximizes the weight of the cut U . It now

follows that the Max-Cut problem is equivalent to System 4.4.

Lemma 4.5. The following vector program is a relaxation of System 4.4.

Maximize
1

2

∑
(vi,vj)∈E

wi,j(1− 〈ui, uj〉) subject to (4.5)

ui ∈ Rn for all 1 ≤ i ≤ n

||ui|| = 1 for all 1 ≤ i ≤ n

Furthermore, X = (xi,j) where xi,j = 〈ui, uj〉 is a positive operator.

Proof. Let {yi}ni=1 be a feasible solution of System 4.4 whose input is the same

graph G(V,E). Let ui = (yi, 0, 0 . . . 0) ∈ Rn for all 1 ≤ i ≤ n. Clearly, {ui}ni=1

is a feasible solution of 4.5. Furthermore, the objective function of 4.5 is equal

to that of 4.4. Thus, System 4.5 is a relaxation of System 4.4.

35

Consider X = (xi,j) where xi,j = 〈ui, uj〉. If V is the matrix whose columns are

{ui}ni=1, X = V TV . By Theorem 3.3, X is a positive operator.

These two lemmas imply that the optimal value of System 4.5, say opt′, can be

found in polynomial time (up to a small error) and that opt′ ≥ opt where opt

is the optimal solution of System 4.4. We now present a randomized procedure

for the Max-Cut problem. We then prove that this is a 0.878-approximation

algorithm in Theorem 4.7.

Algorithm 4.6. Let {ui}ni=1 be an optimal solution to the SDP formulation

(System 4.5) of the Max-Cut problem. Pick a vector r = (r1, r2 . . . rn) ∈ Rn

randomly by picking each component independently from N (0, 1), the normal

distribution with mean 0 and variance 1. Report the cut U of G where U is

constructed as follows: vi ∈ U if, and only if, 〈ui, r〉 ≥ 0.

Theorem 4.7. Algorithm 4.6 (after derandomization), is a 0.878-approximation

algorithm for the Max-Cut problem that runs in polynomial time.

Proof. Let Xe be random variable that takes 1 if the edge e ∈ Cut(U) and is 0

otherwise. Let W be a random variable defined by

W =
∑
e∈E

weXe

Clearly, W is the random variable that gives the weight of the cut. Then,

E[W] =
∑
e∈E

weE[Xe] =
∑
e∈E

wePr[e ∈ Cut(U)] (4.6)

Note that the setup in Equation (4.6) and Equation (4.3) is exactly the same.

Claim 4.7.1. For e = (vi, vj) ∈ E, Pr[(vi, vj) ∈ Cut(U)] = 1
π cos−1(〈ui, uj〉).

Proof. Since ||ui|| = ||uj || = 1, cos−1(〈ui, uj〉) = θ where θ is the angle between

the vectors ui and uj . Let pr be the hyperplane passing through the origin

whose normal is r. Clearly, (vi, vj) ∈ Cut(U) if, and only if, ui and uj lie

on opposing sides of the unit sphere with respect to pr. There exists a circle

whose center is the origin and it passes through both ui and uj . The hyperplane

pr cuts this circle at two diametrically opposite points, say at a and b. Thus,

(vi, vj) ∈ Cut(U) if, and only if, ui and uj lie on opposing sides of the circle

with respect to the line segment ab. This is shown in Figure 2a.

36

a uj

b

ui

pr

θ

(a)

−1 −0.5 0 0.5 1
0

1

2

3
g(x)
0.878

(b)

Figure 2: (a) illustrates the angle between the vectors ui and uj on a planar
section of the unit sphere described in the proof of Claim 4.7.1. The plane
that whose normal is r is denoted by pr and its intersection with the circle are
marked by a and b. In (b), the graph of the ratio of 1

π cos−1(x) and 1
2 (1− x) is

illustrated.

If Yk ∼ N (0, 1) are independent random variables for all 1 ≤ k ≤ n, Y ∼∏n
k=1 Yk has the probability distribution function

f(y) =

n∏
k=1

1√
2π
· e−

y2
k
2 =

1

(2π)
n
2
· e−

||y||2
2

This implies that picking r, and thus pr, was a spherically symmetric process.

Thus, Pr[(vi, vj) ∈ Cut(U)] is the probability that only one of a or b lie within

the arc defined by vi and vj . That is,

Pr[(vi, vj) ∈ Cut(U)] = 2 · θ
2π

=
1

π
· cos−1(〈ui, uj〉)

This completes the proof of the claim. 3

Using this in Equation (4.6), we have

E[W] =
∑

(vi,vj)∈E

wi,j ·
1

π
cos−1(〈ui, uj〉) (4.7)

Claim 4.7.2. For all x ∈ [−1, 1], 1
π · cos−1(x) ≥ 0.878 · 12 (1− x).

Proof. Computing the minima of the ratio of 1
π cos−1(x) and 1

2 (1 − x) gives us

37

the required result. Figure 2b is a plot of g(x) = 2cos−1(x)
π(1−x) for x ∈ [−1, 1]. 3

Substituting this in Equation (4.7), we get

E[W] ≥ 0.878 · 1

2

∑
(vi,vj)∈E

wi,j(1− 〈ui, uj〉) ≥ 0.878 · opt′

This implies that there exists a cut whose weight is at least 0.878 · opt′. Then,

opt′ ≥ opt ≥ 0.878 · opt′ implying that this procedure is indeed a 0.878-

approximation algorithm for the Max-Cut problem. Since SDPs can be solved

(up to a small error) in polynomial time and picking r can be done in polynomial

time, this algorithm can be implemented in polynomial time.

Acknowledgements

The author would like to thank Dr. Aritra Banik and Dr. Sutanu Roy for helpful

discussions. He would also like to thank math.stackexchange users Prudii Arca

and daw for their answers to the author’s questions on the platform.

References

[1] Sheldon Axler. “Operators on Inner Product Spaces”. In: Linear Algebra

Done Right. Cham: Springer International Publishing, 2015, pp. 203–240.

isbn: 978-3-319-11080-6. url: https://doi.org/10.1007/978-3-319-

11080-6_7.

[2] Kenneth Hoffman and Ray A. Kunze. Linear Algebra. PHI Learning, 2004.

isbn: 8120302702. url: http://www.worldcat.org/isbn/8120302702.

[3] S. Kesavan. “Hahn-Banach Theorems”. In: Functional Analysis. Gurgaon:

Hindustan Book Agency, 2009, pp. 69–96. isbn: 978-93-86279-42-2. url:

https://doi.org/10.1007/978-93-86279-42-2_3.

[4] Luca Trevisan. Lecture Notes in Optimization and Algorithmic Paradigms.

Feb. 2011. url: https://people.eecs.berkeley.edu/~luca/cs261.

[5] Lieven Vandenberghe and Stephen P. Boyd. “Semidefinite Programming”.

In: SIAM Rev. 38.1 (1996), pp. 49–95. url: https://doi.org/10.1137/

1038003.

38

https://math.stackexchange.com/questions/3931113/characterization-of-a-real-positive-operator
https://math.stackexchange.com/questions/2184132/linear-transformation-maps-the-first-quadrant-to-a-closed-set
https://doi.org/10.1007/978-3-319-11080-6_7
https://doi.org/10.1007/978-3-319-11080-6_7
http://www.worldcat.org/isbn/8120302702
https://doi.org/10.1007/978-93-86279-42-2_3
https://people.eecs.berkeley.edu/~luca/cs261
https://doi.org/10.1137/1038003
https://doi.org/10.1137/1038003

[6] Robert J. Vanderbei. “The Simplex Method”. In: Linear Programming:

Foundations and Extensions. Cham: Springer International Publishing, 2020,

pp. 11–25. isbn: 978-3-030-39415-8. url: https://doi.org/10.1007/978-

3-030-39415-8_2.

[7] Kevin Wayne. Linear Programming II. July 2017. url: https://www.cs.

princeton.edu/~wayne/teaching/.

[8] David P. Williamson and David B. Shmoys. The Design of Approximation

Algorithms. 1st. USA: Cambridge University Press, 2011. isbn: 0521195276.

url: https://dl.acm.org/doi/book/10.5555/1971947.

Appendix

Here, we prove that the result obtained in Theorem 2.4 can be generalized to a

result for normed linear spaces over R. Throughout this section, we let V be a

normed linear space over R.

Definition. C ⊆ V is said to be a cone if 0 ∈ C and for all x ∈ C, λx ∈ C for

all λ ≥ 0.

Theorem 4.8. Let vi, for all 1 ≤ i ≤ n, be a vector of V . Define

C = {
n∑
i=1

λivi | λi ≥ 0 for all 1 ≤ i ≤ n}

Then, C is a cone that is convex and closed.

Note that this generalizes Theorem 2.4 which states thatA(Xn) is closed since

A(Xn) = {
n∑
i=1

λiA(ei) | λi ≥ 0 for all 1 ≤ i ≤ n}

where {ei}ni=1 is the usual basis of Rn.

Proof. Clearly, C is convex cone. We prove that C is indeed closed by taking

two cases.

Case 4.8.1 ({vi}ni=1 is linearly independent). Consider a sequence {xm} in C.

Thus, xm =
∑n
i=1 λ

(m)
i vi for λ

(m)
i ≥ 0 for all 1 ≤ i ≤ n for all m ∈ N. Define

W = span(v1, v2 . . . vn). Since W is a finite dimensional normed linear space,

it is closed. Since {xm} is also a sequence of W , it converges to a point x =

39

https://doi.org/10.1007/978-3-030-39415-8_2
https://doi.org/10.1007/978-3-030-39415-8_2
https://www.cs.princeton.edu/~wayne/teaching/
https://www.cs.princeton.edu/~wayne/teaching/
https://dl.acm.org/doi/book/10.5555/1971947

∑n
i=1 λivi ∈W . Thus, λ

(m)
i → λi as m→∞ since ||

∑n
i=1(λi−λ(m)

i)vi|| → 0 as

m→∞. Since, for all 1 ≤ i ≤ n and m ∈ N, λ
(m)
i ≥ 0, λi ≥ 0 for all 1 ≤ i ≤ n.

Thus, x ∈ C. As the sequence {xm} was arbitrary, C is closed.

Case 4.8.2 ({vi}ni=1 is not linearly independent). There exists {αi}ni=1 in Rn,

not all 0, such that
∑n
i=1 αivi = 0. Multiplying by −1 if necessary, we make

sure that the set

J = {i | αi < 0 where 1 ≤ i ≤ n}

is non-empty. Let v =
∑n
i=1 λivi ∈ C where λi ≥ 0 for all 1 ≤ i ≤ n. Since∑n

i=1 αivi = 0, for any t ∈ R, v =
∑n
i=1(λi + tαi)vi. Let

t = min
i∈J
{−λi

αi
}

Clearly, t ≥ 0. Also, for all i /∈ J , λi + tαi ≥ λi ≥ 0 since αi ≥ 0. For all i ∈ J ,

t ≤ −λi
αi

=⇒ −tαi ≤ λi =⇒ λi + tαi ≥ 0

Furthermore, there is an index j such that λj + tαj = 0. Thus, v =
∑
i 6=j(λi +

tαi)vi where λi + tαi ≥ 0 for all indices i. This implies that C = ∪nj=1Cj where

Cj = {v =
∑
i 6=j

λivi | λi ≥ 0 for all 1 ≤ i ≤ n}

Since each Cj is generated by fewer elements than C, we can iterate this proce-

dure finitely many times to write C as a finite union of conic sets generated by

a linearly independent set. By the first case, each of these conic sets are closed.

Thus, C is closed.

This completes the proof of this lemma.

40

	Linear Programming
	The Set Cover Problem
	The Maximum Flow Problem

	The Strong Duality Theorem
	Positive Operators on Real Vector Spaces
	Semidefinite Programming

